mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-03 11:42:28 +00:00
Merge pull request #1108 from Kelimion/bigint
big: Add two more asymptotically optimal multiplication methods.
This commit is contained in:
@@ -205,15 +205,6 @@ int_to_byte_little :: proc(v: ^Int) {
|
||||
demo :: proc() {
|
||||
a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(a, b, c, d, e, f);
|
||||
|
||||
foo := "92232459121502451677697058974826760244863271517919321608054113675118660929276431348516553336313179167211015633639725554914519355444316239500734169769447134357534241879421978647995614218985202290368055757891124109355450669008628757662409138767505519391883751112010824030579849970582074544353971308266211776494228299586414907715854328360867232691292422194412634523666770452490676515117702116926803826546868467146319938818238521874072436856528051486567230096290549225463582766830777324099589751817442141036031904145041055454639783559905920619197290800070679733841430619962318433709503256637256772215111521321630777950145713049902839937043785039344243357384899099910837463164007565230287809026956254332260375327814271845678201";
|
||||
|
||||
set(a, foo);
|
||||
|
||||
print("a: ", a);
|
||||
|
||||
is_sqr, _ := internal_int_is_square(a);
|
||||
fmt.printf("is_square: %v\n", is_sqr);
|
||||
}
|
||||
|
||||
main :: proc() {
|
||||
|
||||
@@ -659,8 +659,7 @@ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.alloc
|
||||
Can we use the balance method? Check sizes.
|
||||
* The smaller one needs to be larger than the Karatsuba cut-off.
|
||||
* The bigger one needs to be at least about one `_MUL_KARATSUBA_CUTOFF` bigger
|
||||
* to make some sense, but it depends on architecture, OS, position of the
|
||||
* stars... so YMMV.
|
||||
* to make some sense, but it depends on architecture, OS, position of the stars... so YMMV.
|
||||
* Using it to cut the input into slices small enough for _mul_comba
|
||||
* was actually slower on the author's machine, but YMMV.
|
||||
*/
|
||||
@@ -669,13 +668,11 @@ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.alloc
|
||||
max_used := max(src.used, multiplier.used);
|
||||
digits := src.used + multiplier.used + 1;
|
||||
|
||||
if false && min_used >= MUL_KARATSUBA_CUTOFF &&
|
||||
max_used / 2 >= MUL_KARATSUBA_CUTOFF &&
|
||||
if min_used >= MUL_KARATSUBA_CUTOFF && (max_used / 2) >= MUL_KARATSUBA_CUTOFF && max_used >= (2 * min_used) {
|
||||
/*
|
||||
Not much effect was observed below a ratio of 1:2, but again: YMMV.
|
||||
*/
|
||||
max_used >= 2 * min_used {
|
||||
// err = s_mp_mul_balance(a,b,c);
|
||||
err = _private_int_mul_balance(dest, src, multiplier);
|
||||
} else if min_used >= MUL_TOOM_CUTOFF {
|
||||
/*
|
||||
Toom path commented out until it no longer fails Factorial 10k or 100k,
|
||||
@@ -914,7 +911,7 @@ internal_int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator
|
||||
context.allocator = allocator;
|
||||
|
||||
if n >= FACTORIAL_BINARY_SPLIT_CUTOFF {
|
||||
return #force_inline _private_int_factorial_binary_split(res, n);
|
||||
return _private_int_factorial_binary_split(res, n);
|
||||
}
|
||||
|
||||
i := len(_factorial_table);
|
||||
|
||||
@@ -113,7 +113,7 @@ _private_int_mul_toom :: proc(dest, a, b: ^Int, allocator := context.allocator)
|
||||
context.allocator = allocator;
|
||||
|
||||
S1, S2, T1, a0, a1, a2, b0, b1, b2 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(S1, S2, T1, a0, a1, a2, b0, b1, b2);
|
||||
defer internal_destroy(S1, S2, T1, a0, a1, a2, b0, b1, b2);
|
||||
|
||||
/*
|
||||
Init temps.
|
||||
@@ -258,7 +258,7 @@ _private_int_mul_karatsuba :: proc(dest, a, b: ^Int, allocator := context.alloca
|
||||
context.allocator = allocator;
|
||||
|
||||
x0, x1, y0, y1, t1, x0y0, x1y1 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(x0, x1, y0, y1, t1, x0y0, x1y1);
|
||||
defer internal_destroy(x0, x1, y0, y1, t1, x0y0, x1y1);
|
||||
|
||||
/*
|
||||
min # of digits, divided by two.
|
||||
@@ -426,6 +426,195 @@ _private_int_mul_comba :: proc(dest, a, b: ^Int, digits: int, allocator := conte
|
||||
return internal_clamp(dest);
|
||||
}
|
||||
|
||||
/*
|
||||
Multiplies |a| * |b| and does not compute the lower digs digits
|
||||
[meant to get the higher part of the product]
|
||||
*/
|
||||
_private_int_mul_high :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
/*
|
||||
Can we use the fast multiplier?
|
||||
*/
|
||||
if a.used + b.used + 1 < _WARRAY && min(a.used, b.used) < _MAX_COMBA {
|
||||
return _private_int_mul_high_comba(dest, a, b, digits);
|
||||
}
|
||||
|
||||
internal_grow(dest, a.used + b.used + 1) or_return;
|
||||
dest.used = a.used + b.used + 1;
|
||||
|
||||
pa := a.used;
|
||||
pb := b.used;
|
||||
for ix := 0; ix < pa; ix += 1 {
|
||||
carry := DIGIT(0);
|
||||
|
||||
for iy := digits - ix; iy < pb; iy += 1 {
|
||||
/*
|
||||
Calculate the double precision result.
|
||||
*/
|
||||
r := _WORD(dest.digit[ix + iy]) + _WORD(a.digit[ix]) * _WORD(b.digit[iy]) + _WORD(carry);
|
||||
|
||||
/*
|
||||
Get the lower part.
|
||||
*/
|
||||
dest.digit[ix + iy] = DIGIT(r & _WORD(_MASK));
|
||||
|
||||
/*
|
||||
Carry the carry.
|
||||
*/
|
||||
carry = DIGIT(r >> _WORD(_DIGIT_BITS));
|
||||
}
|
||||
dest.digit[ix + pb] = carry;
|
||||
}
|
||||
return internal_clamp(dest);
|
||||
}
|
||||
|
||||
/*
|
||||
This is a modified version of `_private_int_mul_comba` that only produces output digits *above* `digits`.
|
||||
See the comments for `_private_int_mul_comba` to see how it works.
|
||||
|
||||
This is used in the Barrett reduction since for one of the multiplications
|
||||
only the higher digits were needed. This essentially halves the work.
|
||||
|
||||
Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*/
|
||||
_private_int_mul_high_comba :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
W: [_WARRAY]DIGIT = ---;
|
||||
_W: _WORD = 0;
|
||||
|
||||
/*
|
||||
Number of output digits to produce. Grow the destination as required.
|
||||
*/
|
||||
pa := a.used + b.used;
|
||||
internal_grow(dest, pa) or_return;
|
||||
|
||||
ix: int;
|
||||
for ix = digits; ix < pa; ix += 1 {
|
||||
/*
|
||||
Get offsets into the two bignums.
|
||||
*/
|
||||
ty := min(b.used - 1, ix);
|
||||
tx := ix - ty;
|
||||
|
||||
/*
|
||||
This is the number of times the loop will iterrate, essentially it's
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy := min(a.used - tx, ty + 1);
|
||||
|
||||
/*
|
||||
Execute loop.
|
||||
*/
|
||||
for iz := 0; iz < iy; iz += 1 {
|
||||
_W += _WORD(a.digit[tx + iz]) * _WORD(b.digit[ty - iz]);
|
||||
}
|
||||
|
||||
/*
|
||||
Store term.
|
||||
*/
|
||||
W[ix] = DIGIT(_W) & DIGIT(_MASK);
|
||||
|
||||
/*
|
||||
Make next carry.
|
||||
*/
|
||||
_W = _W >> _WORD(_DIGIT_BITS);
|
||||
}
|
||||
|
||||
/*
|
||||
Setup dest
|
||||
*/
|
||||
old_used := dest.used;
|
||||
dest.used = pa;
|
||||
|
||||
for ix = digits; ix < pa; ix += 1 {
|
||||
/*
|
||||
Now extract the previous digit [below the carry].
|
||||
*/
|
||||
dest.digit[ix] = W[ix];
|
||||
}
|
||||
|
||||
/*
|
||||
Zero remainder.
|
||||
*/
|
||||
internal_zero_unused(dest, old_used);
|
||||
|
||||
/*
|
||||
Adjust dest.used based on leading zeroes.
|
||||
*/
|
||||
return internal_clamp(dest);
|
||||
}
|
||||
|
||||
/*
|
||||
Single-digit multiplication with the smaller number as the single-digit.
|
||||
*/
|
||||
_private_int_mul_balance :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
a, b := a, b;
|
||||
|
||||
a0, tmp, r := &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(a0, tmp, r);
|
||||
|
||||
b_size := min(a.used, b.used);
|
||||
n_blocks := max(a.used, b.used) / b_size;
|
||||
|
||||
internal_grow(a0, b_size + 2) or_return;
|
||||
internal_init_multi(tmp, r) or_return;
|
||||
|
||||
/*
|
||||
Make sure that `a` is the larger one.
|
||||
*/
|
||||
if a.used < b.used {
|
||||
a, b = b, a;
|
||||
}
|
||||
assert(a.used >= b.used);
|
||||
|
||||
i, j := 0, 0;
|
||||
for ; i < n_blocks; i += 1 {
|
||||
/*
|
||||
Cut a slice off of `a`.
|
||||
*/
|
||||
|
||||
a0.used = b_size;
|
||||
internal_copy_digits(a0, a, a0.used, j);
|
||||
j += a0.used;
|
||||
internal_clamp(a0);
|
||||
|
||||
/*
|
||||
Multiply with `b`.
|
||||
*/
|
||||
internal_mul(tmp, a0, b) or_return;
|
||||
|
||||
/*
|
||||
Shift `tmp` to the correct position.
|
||||
*/
|
||||
internal_shl_digit(tmp, b_size * i) or_return;
|
||||
|
||||
/*
|
||||
Add to output. No carry needed.
|
||||
*/
|
||||
internal_add(r, r, tmp) or_return;
|
||||
}
|
||||
|
||||
/*
|
||||
The left-overs; there are always left-overs.
|
||||
*/
|
||||
if j < a.used {
|
||||
a0.used = a.used - j;
|
||||
internal_copy_digits(a0, a, a0.used, j);
|
||||
j += a0.used;
|
||||
internal_clamp(a0);
|
||||
|
||||
internal_mul(tmp, a0, b) or_return;
|
||||
internal_shl_digit(tmp, b_size * i) or_return;
|
||||
internal_add(r, r, tmp) or_return;
|
||||
}
|
||||
|
||||
internal_swap(dest, r);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
Low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
|
||||
Assumes `dest` and `src` to not be `nil`, and `src` to have been initialized.
|
||||
@@ -1188,7 +1377,7 @@ _private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int
|
||||
|
||||
ta, tb, tq, q := &Int{}, &Int{}, &Int{}, &Int{};
|
||||
c: int;
|
||||
defer destroy(ta, tb, tq, q);
|
||||
defer internal_destroy(ta, tb, tq, q);
|
||||
|
||||
for {
|
||||
internal_one(tq) or_return;
|
||||
@@ -1241,31 +1430,34 @@ _private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int
|
||||
Binary split factorial algo due to: http://www.luschny.de/math/factorial/binarysplitfact.html
|
||||
*/
|
||||
_private_int_factorial_binary_split :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
inner, outer, start, stop, temp := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(inner, outer, start, stop, temp);
|
||||
|
||||
internal_one(inner, false, allocator) or_return;
|
||||
internal_one(outer, false, allocator) or_return;
|
||||
internal_one(inner, false) or_return;
|
||||
internal_one(outer, false) or_return;
|
||||
|
||||
bits_used := int(_DIGIT_TYPE_BITS - intrinsics.count_leading_zeros(n));
|
||||
|
||||
for i := bits_used; i >= 0; i -= 1 {
|
||||
start := (n >> (uint(i) + 1)) + 1 | 1;
|
||||
stop := (n >> uint(i)) + 1 | 1;
|
||||
_private_int_recursive_product(temp, start, stop, 0, allocator) or_return;
|
||||
internal_mul(inner, inner, temp, allocator) or_return;
|
||||
internal_mul(outer, outer, inner, allocator) or_return;
|
||||
_private_int_recursive_product(temp, start, stop, 0) or_return;
|
||||
internal_mul(inner, inner, temp) or_return;
|
||||
internal_mul(outer, outer, inner) or_return;
|
||||
}
|
||||
shift := n - intrinsics.count_ones(n);
|
||||
|
||||
return internal_shl(res, outer, int(shift), allocator);
|
||||
return internal_shl(res, outer, int(shift));
|
||||
}
|
||||
|
||||
/*
|
||||
Recursive product used by binary split factorial algorithm.
|
||||
*/
|
||||
_private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int(0), allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
t1, t2 := &Int{}, &Int{};
|
||||
defer internal_destroy(t1, t2);
|
||||
|
||||
@@ -1275,28 +1467,28 @@ _private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int
|
||||
|
||||
num_factors := (stop - start) >> 1;
|
||||
if num_factors == 2 {
|
||||
internal_set(t1, start, false, allocator) or_return;
|
||||
internal_set(t1, start, false) or_return;
|
||||
when true {
|
||||
internal_grow(t2, t1.used + 1, false, allocator) or_return;
|
||||
internal_add(t2, t1, 2, allocator) or_return;
|
||||
internal_grow(t2, t1.used + 1, false) or_return;
|
||||
internal_add(t2, t1, 2) or_return;
|
||||
} else {
|
||||
add(t2, t1, 2) or_return;
|
||||
internal_add(t2, t1, 2) or_return;
|
||||
}
|
||||
return internal_mul(res, t1, t2, allocator);
|
||||
return internal_mul(res, t1, t2);
|
||||
}
|
||||
|
||||
if num_factors > 1 {
|
||||
mid := (start + num_factors) | 1;
|
||||
_private_int_recursive_product(t1, start, mid, level + 1, allocator) or_return;
|
||||
_private_int_recursive_product(t2, mid, stop, level + 1, allocator) or_return;
|
||||
return internal_mul(res, t1, t2, allocator);
|
||||
_private_int_recursive_product(t1, start, mid, level + 1) or_return;
|
||||
_private_int_recursive_product(t2, mid, stop, level + 1) or_return;
|
||||
return internal_mul(res, t1, t2);
|
||||
}
|
||||
|
||||
if num_factors == 1 {
|
||||
return #force_inline internal_set(res, start, true, allocator);
|
||||
return #force_inline internal_set(res, start, true);
|
||||
}
|
||||
|
||||
return #force_inline internal_one(res, true, allocator);
|
||||
return #force_inline internal_one(res, true);
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
@@ -403,14 +403,21 @@ def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
|
||||
|
||||
return test("test_shr_signed", res, [a, bits], expected_error, expected_result)
|
||||
|
||||
def test_factorial(n = 0, expected_error = Error.Okay):
|
||||
args = [n]
|
||||
res = int_factorial(*args)
|
||||
def test_factorial(number = 0, expected_error = Error.Okay):
|
||||
print("Factorial:", number)
|
||||
args = [number]
|
||||
try:
|
||||
res = int_factorial(*args)
|
||||
except OSError as e:
|
||||
print("{} while trying to factorial {}.".format(e, number))
|
||||
if EXIT_ON_FAIL: exit(3)
|
||||
return False
|
||||
|
||||
expected_result = None
|
||||
if expected_error == Error.Okay:
|
||||
expected_result = math.factorial(n)
|
||||
expected_result = math.factorial(number)
|
||||
|
||||
return test("test_factorial", res, [n], expected_error, expected_result)
|
||||
return test("test_factorial", res, [number], expected_error, expected_result)
|
||||
|
||||
def test_gcd(a = 0, b = 0, expected_error = Error.Okay):
|
||||
args = [arg_to_odin(a), arg_to_odin(b)]
|
||||
|
||||
Reference in New Issue
Block a user