Reorganize runtime code into separate files

This commit is contained in:
gingerBill
2020-11-19 00:08:23 +00:00
parent 3b7fd4711f
commit 913eac13b1
4 changed files with 1231 additions and 1239 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,823 @@
package runtime
@builtin
Maybe :: union(T: typeid) #maybe {T};
@thread_local global_default_temp_allocator_data: Default_Temp_Allocator;
@builtin
init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator);
}
@builtin
copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
n := max(0, min(len(dst), len(src)));
if n > 0 {
mem_copy(raw_data(dst), raw_data(src), n*size_of(E));
}
return n;
}
@builtin
copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
n := max(0, min(len(dst), len(src)));
if n > 0 {
mem_copy(raw_data(dst), raw_data(src), n);
}
return n;
}
@builtin
copy :: proc{copy_slice, copy_from_string};
@builtin
unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
bounds_check_error_loc(loc, index, len(array));
n := len(array)-1;
if index != n {
array[index] = array[n];
}
pop(array);
}
@builtin
ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
bounds_check_error_loc(loc, index, len(array));
if index+1 < len(array) {
copy(array[index:], array[index+1:]);
}
pop(array);
}
@builtin
remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) {
slice_expr_error_lo_hi_loc(loc, lo, hi, len(array));
n := max(hi-lo, 0);
if n > 0 {
if hi != len(array) {
copy(array[lo:], array[hi:]);
}
(^Raw_Dynamic_Array)(array).len -= n;
}
}
@builtin
pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, "", loc);
res = array[len(array)-1];
(^Raw_Dynamic_Array)(array).len -= 1;
return res;
}
@builtin
pop_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return;
}
res, ok = array[len(array)-1], true;
(^Raw_Dynamic_Array)(array).len -= 1;
return;
}
@builtin
pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, "", loc);
res = array[0];
if len(array) > 1 {
copy(array[0:], array[1:]);
}
(^Raw_Dynamic_Array)(array).len -= 1;
return res;
}
@builtin
pop_front_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return;
}
res, ok = array[0], true;
if len(array) > 1 {
copy(array[0:], array[1:]);
}
(^Raw_Dynamic_Array)(array).len -= 1;
return;
}
@builtin
clear :: proc{clear_dynamic_array, clear_map};
@builtin
reserve :: proc{reserve_dynamic_array, reserve_map};
@builtin
resize :: proc{resize_dynamic_array};
@builtin
free :: proc{mem_free};
@builtin
free_all :: proc{mem_free_all};
@builtin
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) {
mem_free(raw_data(str), allocator, loc);
}
@builtin
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) {
mem_free((^byte)(str), allocator, loc);
}
@builtin
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) {
mem_free(raw_data(array), array.allocator, loc);
}
@builtin
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) {
mem_free(raw_data(array), allocator, loc);
}
@builtin
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) {
raw := transmute(Raw_Map)m;
delete_slice(raw.hashes);
mem_free(raw.entries.data, raw.entries.allocator, loc);
}
@builtin
delete :: proc{
delete_string,
delete_cstring,
delete_dynamic_array,
delete_slice,
delete_map,
};
@builtin
new :: inline proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> ^T {
ptr := (^T)(mem_alloc(size_of(T), align_of(T), allocator, loc));
if ptr != nil { ptr^ = T{}; }
return ptr;
}
@builtin
new_clone :: inline proc(data: $T, allocator := context.allocator, loc := #caller_location) -> ^T {
ptr := (^T)(mem_alloc(size_of(T), align_of(T), allocator, loc));
if ptr != nil { ptr^ = data; }
return ptr;
}
make_aligned :: proc($T: typeid/[]$E, auto_cast len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> T {
make_slice_error_loc(loc, len);
data := mem_alloc(size_of(E)*len, alignment, allocator, loc);
if data == nil && size_of(E) != 0 {
return nil;
}
// mem_zero(data, size_of(E)*len);
s := Raw_Slice{data, len};
return transmute(T)s;
}
@builtin
make_slice :: inline proc($T: typeid/[]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
return make_aligned(T, len, align_of(E), allocator, loc);
}
@builtin
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> T {
return make_dynamic_array_len_cap(T, 0, 16, allocator, loc);
}
@builtin
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
return make_dynamic_array_len_cap(T, len, len, allocator, loc);
}
@builtin
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, auto_cast len: int, auto_cast cap: int, allocator := context.allocator, loc := #caller_location) -> T {
make_dynamic_array_error_loc(loc, len, cap);
data := mem_alloc(size_of(E)*cap, align_of(E), allocator, loc);
s := Raw_Dynamic_Array{data, len, cap, allocator};
if data == nil && size_of(E) != 0 {
s.len, s.cap = 0, 0;
}
// mem_zero(data, size_of(E)*cap);
return transmute(T)s;
}
@builtin
make_map :: proc($T: typeid/map[$K]$E, auto_cast cap: int = 16, allocator := context.allocator, loc := #caller_location) -> T {
make_map_expr_error_loc(loc, cap);
context.allocator = allocator;
m: T;
reserve_map(&m, cap);
return m;
}
@builtin
make :: proc{
make_slice,
make_dynamic_array,
make_dynamic_array_len,
make_dynamic_array_len_cap,
make_map,
};
@builtin
clear_map :: inline proc "contextless" (m: ^$T/map[$K]$V) {
if m == nil {
return;
}
raw_map := (^Raw_Map)(m);
entries := (^Raw_Dynamic_Array)(&raw_map.entries);
entries.len = 0;
for _, i in raw_map.hashes {
raw_map.hashes[i] = -1;
}
}
@builtin
reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int) {
if m != nil {
__dynamic_map_reserve(__get_map_header(m), capacity);
}
}
@builtin
delete_key :: proc(m: ^$T/map[$K]$V, key: K) {
if m != nil {
__dynamic_map_delete_key(__get_map_header(m), __get_map_key(key));
}
}
@builtin
append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := 1;
if cap(array) < len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
a := (^Raw_Dynamic_Array)(array);
if size_of(E) != 0 {
data := (^E)(a.data);
assert(data != nil);
val := arg;
mem_copy(ptr_offset(data, a.len), &val, size_of(E));
}
a.len += arg_len;
}
}
@builtin
append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := len(args);
if arg_len <= 0 {
return;
}
if cap(array) < len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
a := (^Raw_Dynamic_Array)(array);
if size_of(E) != 0 {
data := (^E)(a.data);
assert(data != nil);
mem_copy(ptr_offset(data, a.len), &args[0], size_of(E) * arg_len);
}
a.len += arg_len;
}
}
@builtin
append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) {
args := transmute([]E)arg;
append_elems(array=array, args=args, loc=loc);
}
@builtin
reserve_soa :: proc(array: ^$T/#soa[dynamic]$E, capacity: int, loc := #caller_location) -> bool {
if array == nil {
return false;
}
old_cap := cap(array);
if capacity <= old_cap {
return true;
}
if array.allocator.procedure == nil {
array.allocator = context.allocator;
}
assert(array.allocator.procedure != nil);
ti := type_info_of(typeid_of(T));
ti = type_info_base(ti);
si := &ti.variant.(Type_Info_Struct);
field_count := uintptr(len(si.offsets) - 3);
if field_count == 0 {
return true;
}
cap_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 1)*size_of(rawptr));
assert(cap_ptr^ == old_cap);
old_size := 0;
new_size := 0;
max_align := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
old_size = align_forward_int(old_size, type.align);
new_size = align_forward_int(new_size, type.align);
old_size += type.size * old_cap;
new_size += type.size * capacity;
}
old_size = align_forward_int(old_size, max_align);
new_size = align_forward_int(new_size, max_align);
old_data := (^rawptr)(array)^;
new_data := array.allocator.procedure(
array.allocator.data, .Alloc, new_size, max_align,
nil, old_size, 0, loc,
);
if new_data == nil {
return false;
}
cap_ptr^ = capacity;
old_offset := 0;
new_offset := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
old_offset = align_forward_int(old_offset, type.align);
new_offset = align_forward_int(new_offset, type.align);
new_data_elem := rawptr(uintptr(new_data) + uintptr(new_offset));
old_data_elem := rawptr(uintptr(old_data) + uintptr(old_offset));
mem_copy(new_data_elem, old_data_elem, type.size * old_cap);
(^rawptr)(uintptr(array) + i*size_of(rawptr))^ = new_data_elem;
old_offset += type.size * old_cap;
new_offset += type.size * capacity;
}
array.allocator.procedure(
array.allocator.data, .Free, 0, max_align,
old_data, old_size, 0, loc,
);
return true;
}
@builtin
append_soa_elem :: proc(array: ^$T/#soa[dynamic]$E, arg: E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := 1;
if cap(array) <= len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve_soa(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
ti := type_info_of(typeid_of(T));
ti = type_info_base(ti);
si := &ti.variant.(Type_Info_Struct);
field_count := uintptr(len(si.offsets) - 3);
if field_count == 0 {
return;
}
data := (^rawptr)(array)^;
len_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 0)*size_of(rawptr));
soa_offset := 0;
item_offset := 0;
arg_copy := arg;
arg_ptr := &arg_copy;
max_align := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
soa_offset = align_forward_int(soa_offset, type.align);
item_offset = align_forward_int(item_offset, type.align);
dst := rawptr(uintptr(data) + uintptr(soa_offset) + uintptr(type.size * len_ptr^));
src := rawptr(uintptr(arg_ptr) + uintptr(item_offset));
mem_copy(dst, src, type.size);
soa_offset += type.size * cap(array);
item_offset += type.size;
}
len_ptr^ += arg_len;
}
}
@builtin
append_soa_elems :: proc(array: ^$T/#soa[dynamic]$E, args: ..E, loc := #caller_location) {
if array == nil {
return;
}
arg_len := len(args);
if arg_len == 0 {
return;
}
if cap(array) <= len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len);
_ = reserve_soa(array, cap, loc);
}
arg_len = min(cap(array)-len(array), arg_len);
if arg_len > 0 {
ti := type_info_of(typeid_of(T));
ti = type_info_base(ti);
si := &ti.variant.(Type_Info_Struct);
field_count := uintptr(len(si.offsets) - 3);
if field_count == 0 {
return;
}
data := (^rawptr)(array)^;
len_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 0)*size_of(rawptr));
soa_offset := 0;
item_offset := 0;
args_ptr := &args[0];
max_align := 0;
for i in 0..<field_count {
type := si.types[i].variant.(Type_Info_Pointer).elem;
max_align = max(max_align, type.align);
soa_offset = align_forward_int(soa_offset, type.align);
item_offset = align_forward_int(item_offset, type.align);
dst := uintptr(data) + uintptr(soa_offset) + uintptr(type.size * len_ptr^);
src := uintptr(args_ptr) + uintptr(item_offset);
for j in 0..<arg_len {
d := rawptr(dst + uintptr(j*type.size));
s := rawptr(src + uintptr(j*size_of(E)));
mem_copy(d, s, type.size);
}
soa_offset += type.size * cap(array);
item_offset += type.size;
}
len_ptr^ += arg_len;
}
}
@builtin
append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) {
for arg in args {
append(array = array, args = transmute([]E)(arg), loc = loc);
}
}
@builtin append :: proc{append_elem, append_elems, append_elem_string};
@builtin append_soa :: proc{append_soa_elem, append_soa_elems};
@builtin
append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) {
if array == nil {
return;
}
resize(array, len(array)+1);
}
@builtin
insert_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return;
}
n := len(array);
m :: 1;
resize(array, n+m, loc);
if n+m <= len(array) {
when size_of(E) != 0 {
copy(array[index+m:], array[index:]);
array[index] = arg;
}
ok = true;
}
return;
}
@builtin
insert_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return;
}
if len(args) == 0 {
ok = true;
return;
}
n := len(array);
m := len(args);
resize(array, n+m, loc);
if n+m <= len(array) {
when size_of(E) != 0 {
copy(array[index+m:], array[index:]);
copy(array[index:], args);
}
ok = true;
}
return;
}
@builtin
insert_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return;
}
if len(args) == 0 {
ok = true;
return;
}
n := len(array);
m := len(args);
resize(array, n+m, loc);
if n+m <= len(array) {
copy(array[index+m:], array[index:]);
copy(array[index:], args);
ok = true;
}
return;
}
@builtin insert_at :: proc{insert_at_elem, insert_at_elems, insert_at_elem_string};
@builtin
clear_dynamic_array :: inline proc "contextless" (array: ^$T/[dynamic]$E) {
if array != nil {
(^Raw_Dynamic_Array)(array).len = 0;
}
}
@builtin
reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> bool {
if array == nil {
return false;
}
a := (^Raw_Dynamic_Array)(array);
if capacity <= a.cap {
return true;
}
if a.allocator.procedure == nil {
a.allocator = context.allocator;
}
assert(a.allocator.procedure != nil);
old_size := a.cap * size_of(E);
new_size := capacity * size_of(E);
allocator := a.allocator;
new_data := allocator.procedure(
allocator.data, .Resize, new_size, align_of(E),
a.data, old_size, 0, loc,
);
if new_data == nil {
return false;
}
a.data = new_data;
a.cap = capacity;
return true;
}
@builtin
resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> bool {
if array == nil {
return false;
}
a := (^Raw_Dynamic_Array)(array);
if length <= a.cap {
a.len = max(length, 0);
return true;
}
if a.allocator.procedure == nil {
a.allocator = context.allocator;
}
assert(a.allocator.procedure != nil);
old_size := a.cap * size_of(E);
new_size := length * size_of(E);
allocator := a.allocator;
new_data := allocator.procedure(
allocator.data, .Resize, new_size, align_of(E),
a.data, old_size, 0, loc,
);
if new_data == nil {
return false;
}
a.data = new_data;
a.len = length;
a.cap = length;
return true;
}
@builtin
incl_elem :: inline proc(s: ^$S/bit_set[$E; $U], elem: E) -> S {
s^ |= {elem};
return s^;
}
@builtin
incl_elems :: inline proc(s: ^$S/bit_set[$E; $U], elems: ..E) -> S {
for elem in elems {
s^ |= {elem};
}
return s^;
}
@builtin
incl_bit_set :: inline proc(s: ^$S/bit_set[$E; $U], other: S) -> S {
s^ |= other;
return s^;
}
@builtin
excl_elem :: inline proc(s: ^$S/bit_set[$E; $U], elem: E) -> S {
s^ &~= {elem};
return s^;
}
@builtin
excl_elems :: inline proc(s: ^$S/bit_set[$E; $U], elems: ..E) -> S {
for elem in elems {
s^ &~= {elem};
}
return s^;
}
@builtin
excl_bit_set :: inline proc(s: ^$S/bit_set[$E; $U], other: S) -> S {
s^ &~= other;
return s^;
}
@builtin incl :: proc{incl_elem, incl_elems, incl_bit_set};
@builtin excl :: proc{excl_elem, excl_elems, excl_bit_set};
@builtin
card :: proc(s: $S/bit_set[$E; $U]) -> int {
when size_of(S) == 1 {
foreign { @(link_name="llvm.ctpop.i8") count_ones :: proc(i: u8) -> u8 --- }
return int(count_ones(transmute(u8)s));
} else when size_of(S) == 2 {
foreign { @(link_name="llvm.ctpop.i16") count_ones :: proc(i: u16) -> u16 --- }
return int(count_ones(transmute(u16)s));
} else when size_of(S) == 4 {
foreign { @(link_name="llvm.ctpop.i32") count_ones :: proc(i: u32) -> u32 --- }
return int(count_ones(transmute(u32)s));
} else when size_of(S) == 8 {
foreign { @(link_name="llvm.ctpop.i64") count_ones :: proc(i: u64) -> u64 --- }
return int(count_ones(transmute(u64)s));
} else when size_of(S) == 16 {
foreign { @(link_name="llvm.ctpop.i128") count_ones :: proc(i: u128) -> u128 --- }
return int(count_ones(transmute(u128)s));
} else {
#panic("Unhandled card bit_set size");
}
}
@builtin
raw_array_data :: proc "contextless" (a: $P/^($T/[$N]$E)) -> ^E {
return (^E)(a);
}
@builtin
raw_slice_data :: proc "contextless" (s: $S/[]$E) -> ^E {
ptr := (transmute(Raw_Slice)s).data;
return (^E)(ptr);
}
@builtin
raw_dynamic_array_data :: proc "contextless" (s: $S/[dynamic]$E) -> ^E {
ptr := (transmute(Raw_Dynamic_Array)s).data;
return (^E)(ptr);
}
@builtin
raw_string_data :: proc "contextless" (s: $S/string) -> ^u8 {
return (transmute(Raw_String)s).data;
}
@builtin
raw_data :: proc{raw_array_data, raw_slice_data, raw_dynamic_array_data, raw_string_data};
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
assert :: proc(condition: bool, message := "", loc := #caller_location) {
if !condition {
proc(message: string, loc: Source_Code_Location) {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
p("runtime assertion", message, loc);
}(message, loc);
}
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
panic :: proc(message: string, loc := #caller_location) -> ! {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
p("panic", message, loc);
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
unimplemented :: proc(message := "", loc := #caller_location) -> ! {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
p("not yet implemented", message, loc);
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
unreachable :: proc(message := "", loc := #caller_location) -> ! {
p := context.assertion_failure_proc;
if p == nil {
p = default_assertion_failure_proc;
}
if message != "" {
p("internal error", message, loc);
} else {
p("internal error", "entered unreachable code", loc);
}
}

View File

@@ -0,0 +1,100 @@
package runtime
__dynamic_array_make :: proc(array_: rawptr, elem_size, elem_align: int, len, cap: int, loc := #caller_location) {
array := (^Raw_Dynamic_Array)(array_);
array.allocator = context.allocator;
assert(array.allocator.procedure != nil);
if cap > 0 {
__dynamic_array_reserve(array_, elem_size, elem_align, cap, loc);
array.len = len;
}
}
__dynamic_array_reserve :: proc(array_: rawptr, elem_size, elem_align: int, cap: int, loc := #caller_location) -> bool {
array := (^Raw_Dynamic_Array)(array_);
// NOTE(tetra, 2020-01-26): We set the allocator before earlying-out below, because user code is usually written
// assuming that appending/reserving will set the allocator, if it is not already set.
if array.allocator.procedure == nil {
array.allocator = context.allocator;
}
assert(array.allocator.procedure != nil);
if cap <= array.cap {
return true;
}
old_size := array.cap * elem_size;
new_size := cap * elem_size;
allocator := array.allocator;
new_data := allocator.procedure(allocator.data, .Resize, new_size, elem_align, array.data, old_size, 0, loc);
if new_data != nil || elem_size == 0 {
array.data = new_data;
array.cap = cap;
return true;
}
return false;
}
__dynamic_array_resize :: proc(array_: rawptr, elem_size, elem_align: int, len: int, loc := #caller_location) -> bool {
array := (^Raw_Dynamic_Array)(array_);
ok := __dynamic_array_reserve(array_, elem_size, elem_align, len, loc);
if ok {
array.len = len;
}
return ok;
}
__dynamic_array_append :: proc(array_: rawptr, elem_size, elem_align: int,
items: rawptr, item_count: int, loc := #caller_location) -> int {
array := (^Raw_Dynamic_Array)(array_);
if items == nil {
return 0;
}
if item_count <= 0 {
return 0;
}
ok := true;
if array.cap <= array.len+item_count {
cap := 2 * array.cap + max(8, item_count);
ok = __dynamic_array_reserve(array, elem_size, elem_align, cap, loc);
}
// TODO(bill): Better error handling for failed reservation
if !ok {
return array.len;
}
assert(array.data != nil);
data := uintptr(array.data) + uintptr(elem_size*array.len);
mem_copy(rawptr(data), items, elem_size * item_count);
array.len += item_count;
return array.len;
}
__dynamic_array_append_nothing :: proc(array_: rawptr, elem_size, elem_align: int, loc := #caller_location) -> int {
array := (^Raw_Dynamic_Array)(array_);
ok := true;
if array.cap <= array.len+1 {
cap := 2 * array.cap + max(8, 1);
ok = __dynamic_array_reserve(array, elem_size, elem_align, cap, loc);
}
// TODO(bill): Better error handling for failed reservation
if !ok {
return array.len;
}
assert(array.data != nil);
data := uintptr(array.data) + uintptr(elem_size*array.len);
mem_zero(rawptr(data), elem_size);
array.len += 1;
return array.len;
}

View File

@@ -0,0 +1,303 @@
package runtime
import "intrinsics"
_ :: intrinsics;
__get_map_header :: proc "contextless" (m: ^$T/map[$K]$V) -> Map_Header {
header := Map_Header{m = (^Raw_Map)(m)};
Entry :: struct {
key: Map_Key,
next: int,
value: V,
};
header.is_key_string = intrinsics.type_is_string(K);
header.entry_size = int(size_of(Entry));
header.entry_align = int(align_of(Entry));
header.value_offset = uintptr(offset_of(Entry, value));
header.value_size = int(size_of(V));
return header;
}
__get_map_key :: proc "contextless" (k: $K) -> Map_Key {
key := k;
map_key: Map_Key;
T :: intrinsics.type_core_type(K);
when intrinsics.type_is_integer(T) {
map_key.hash = default_hash_ptr(&key, size_of(T));
sz :: 8*size_of(T);
when sz == 8 { map_key.key.val = u64(( ^u8)(&key)^); }
else when sz == 16 { map_key.key.val = u64((^u16)(&key)^); }
else when sz == 32 { map_key.key.val = u64((^u32)(&key)^); }
else when sz == 64 { map_key.key.val = u64((^u64)(&key)^); }
else { #panic("Unhandled integer size"); }
} else when intrinsics.type_is_rune(T) {
map_key.hash = default_hash_ptr(&key, size_of(T));
map_key.key.val = u64((^rune)(&key)^);
} else when intrinsics.type_is_pointer(T) {
map_key.hash = default_hash_ptr(&key, size_of(T));
map_key.key.val = u64(uintptr((^rawptr)(&key)^));
} else when intrinsics.type_is_float(T) {
map_key.hash = default_hash_ptr(&key, size_of(T));
sz :: 8*size_of(T);
when sz == 32 { map_key.key.val = u64((^u32)(&key)^); }
else when sz == 64 { map_key.key.val = u64((^u64)(&key)^); }
else { #panic("Unhandled float size"); }
} else when intrinsics.type_is_string(T) {
#assert(T == string);
str := (^string)(&key)^;
map_key.hash = default_hash_string(str);
map_key.key.str = str;
} else {
#panic("Unhandled map key type");
}
return map_key;
}
_fnv64a :: proc "contextless" (data: []byte, seed: u64 = 0xcbf29ce484222325) -> u64 {
h: u64 = seed;
for b in data {
h = (h ~ u64(b)) * 0x100000001b3;
}
return h;
}
default_hash :: inline proc "contextless" (data: []byte) -> u64 {
return _fnv64a(data);
}
default_hash_string :: inline proc "contextless" (s: string) -> u64 {
return default_hash(transmute([]byte)(s));
}
default_hash_ptr :: inline proc "contextless" (data: rawptr, size: int) -> u64 {
s := Raw_Slice{data, size};
return default_hash(transmute([]byte)(s));
}
source_code_location_hash :: proc(s: Source_Code_Location) -> u64 {
hash := _fnv64a(transmute([]byte)s.file_path);
hash = hash ~ (u64(s.line) * 0x100000001b3);
hash = hash ~ (u64(s.column) * 0x100000001b3);
return hash;
}
__slice_resize :: proc(array_: ^$T/[]$E, new_count: int, allocator: Allocator, loc := #caller_location) -> bool {
array := (^Raw_Slice)(array_);
if new_count < array.len {
return true;
}
assert(allocator.procedure != nil);
old_size := array.len*size_of(T);
new_size := new_count*size_of(T);
new_data := mem_resize(array.data, old_size, new_size, align_of(T), allocator, loc);
if new_data == nil {
return false;
}
array.data = new_data;
array.len = new_count;
return true;
}
__dynamic_map_reserve :: proc(using header: Map_Header, cap: int, loc := #caller_location) {
__dynamic_array_reserve(&m.entries, entry_size, entry_align, cap, loc);
old_len := len(m.hashes);
__slice_resize(&m.hashes, cap, m.entries.allocator, loc);
for i in old_len..<len(m.hashes) {
m.hashes[i] = -1;
}
}
__dynamic_map_rehash :: proc(using header: Map_Header, new_count: int, loc := #caller_location) #no_bounds_check {
new_header: Map_Header = header;
nm := Raw_Map{};
nm.entries.allocator = m.entries.allocator;
new_header.m = &nm;
c := context;
if m.entries.allocator.procedure != nil {
c.allocator = m.entries.allocator;
}
context = c;
__dynamic_array_reserve(&nm.entries, entry_size, entry_align, m.entries.len, loc);
__slice_resize(&nm.hashes, new_count, m.entries.allocator, loc);
for i in 0 ..< new_count {
nm.hashes[i] = -1;
}
for i in 0 ..< m.entries.len {
if len(nm.hashes) == 0 {
__dynamic_map_grow(new_header, loc);
}
entry_header := __dynamic_map_get_entry(header, i);
data := uintptr(entry_header);
fr := __dynamic_map_find(new_header, entry_header.key);
j := __dynamic_map_add_entry(new_header, entry_header.key, loc);
if fr.entry_prev < 0 {
nm.hashes[fr.hash_index] = j;
} else {
e := __dynamic_map_get_entry(new_header, fr.entry_prev);
e.next = j;
}
e := __dynamic_map_get_entry(new_header, j);
e.next = fr.entry_index;
ndata := uintptr(e);
mem_copy(rawptr(ndata+value_offset), rawptr(data+value_offset), value_size);
if __dynamic_map_full(new_header) {
__dynamic_map_grow(new_header, loc);
}
}
delete(m.hashes, m.entries.allocator, loc);
free(m.entries.data, m.entries.allocator, loc);
header.m^ = nm;
}
__dynamic_map_get :: proc(h: Map_Header, key: Map_Key) -> rawptr {
index := __dynamic_map_find(h, key).entry_index;
if index >= 0 {
data := uintptr(__dynamic_map_get_entry(h, index));
return rawptr(data + h.value_offset);
}
return nil;
}
__dynamic_map_set :: proc(h: Map_Header, key: Map_Key, value: rawptr, loc := #caller_location) #no_bounds_check {
index: int;
assert(value != nil);
if len(h.m.hashes) == 0 {
__dynamic_map_reserve(h, INITIAL_MAP_CAP, loc);
__dynamic_map_grow(h, loc);
}
fr := __dynamic_map_find(h, key);
if fr.entry_index >= 0 {
index = fr.entry_index;
} else {
index = __dynamic_map_add_entry(h, key, loc);
if fr.entry_prev >= 0 {
entry := __dynamic_map_get_entry(h, fr.entry_prev);
entry.next = index;
} else {
h.m.hashes[fr.hash_index] = index;
}
}
{
e := __dynamic_map_get_entry(h, index);
e.key = key;
val := (^byte)(uintptr(e) + h.value_offset);
mem_copy(val, value, h.value_size);
}
if __dynamic_map_full(h) {
__dynamic_map_grow(h, loc);
}
}
__dynamic_map_grow :: proc(using h: Map_Header, loc := #caller_location) {
// TODO(bill): Determine an efficient growing rate
new_count := max(4*m.entries.cap + 7, INITIAL_MAP_CAP);
__dynamic_map_rehash(h, new_count, loc);
}
__dynamic_map_full :: inline proc(using h: Map_Header) -> bool {
return int(0.75 * f64(len(m.hashes))) <= m.entries.cap;
}
__dynamic_map_hash_equal :: proc(h: Map_Header, a, b: Map_Key) -> bool {
if a.hash == b.hash {
if h.is_key_string {
return a.key.str == b.key.str;
} else {
return a.key.val == b.key.val;
}
return true;
}
return false;
}
__dynamic_map_find :: proc(using h: Map_Header, key: Map_Key) -> Map_Find_Result #no_bounds_check {
fr := Map_Find_Result{-1, -1, -1};
if n := u64(len(m.hashes)); n > 0 {
fr.hash_index = int(key.hash % n);
fr.entry_index = m.hashes[fr.hash_index];
for fr.entry_index >= 0 {
entry := __dynamic_map_get_entry(h, fr.entry_index);
if __dynamic_map_hash_equal(h, entry.key, key) {
return fr;
}
fr.entry_prev = fr.entry_index;
fr.entry_index = entry.next;
}
}
return fr;
}
__dynamic_map_add_entry :: proc(using h: Map_Header, key: Map_Key, loc := #caller_location) -> int {
prev := m.entries.len;
c := __dynamic_array_append_nothing(&m.entries, entry_size, entry_align, loc);
if c != prev {
end := __dynamic_map_get_entry(h, c-1);
end.key = key;
end.next = -1;
}
return prev;
}
__dynamic_map_delete_key :: proc(using h: Map_Header, key: Map_Key) {
fr := __dynamic_map_find(h, key);
if fr.entry_index >= 0 {
__dynamic_map_erase(h, fr);
}
}
__dynamic_map_get_entry :: proc(using h: Map_Header, index: int) -> ^Map_Entry_Header {
assert(0 <= index && index < m.entries.len);
return (^Map_Entry_Header)(uintptr(m.entries.data) + uintptr(index*entry_size));
}
__dynamic_map_erase :: proc(using h: Map_Header, fr: Map_Find_Result) #no_bounds_check {
if fr.entry_prev < 0 {
m.hashes[fr.hash_index] = __dynamic_map_get_entry(h, fr.entry_index).next;
} else {
prev := __dynamic_map_get_entry(h, fr.entry_prev);
curr := __dynamic_map_get_entry(h, fr.entry_index);
prev.next = curr.next;
}
if (fr.entry_index == m.entries.len-1) {
// NOTE(bill): No need to do anything else, just pop
} else {
old := __dynamic_map_get_entry(h, fr.entry_index);
end := __dynamic_map_get_entry(h, m.entries.len-1);
mem_copy(old, end, entry_size);
if last := __dynamic_map_find(h, old.key); last.entry_prev >= 0 {
last_entry := __dynamic_map_get_entry(h, last.entry_prev);
last_entry.next = fr.entry_index;
} else {
m.hashes[last.hash_index] = fr.entry_index;
}
}
// TODO(bill): Is this correct behaviour?
m.entries.len -= 1;
}