Move all os specific stuff for the runtime to one file

This commit is contained in:
gingerBill
2020-09-15 12:19:56 +01:00
parent 17b3c2ed4c
commit 9d91c46cb4
5 changed files with 272 additions and 151 deletions

View File

@@ -522,6 +522,21 @@ init_global_temporary_allocator :: proc(data: []byte, backup_allocator := contex
}
default_assertion_failure_proc :: proc(prefix, message: string, loc: Source_Code_Location) {
fd := os_stderr();
print_caller_location(fd, loc);
print_string(fd, " ");
print_string(fd, prefix);
if len(message) > 0 {
print_string(fd, ": ");
print_string(fd, message);
}
print_byte(fd, '\n');
debug_trap();
}
@builtin
copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {

View File

@@ -1,21 +0,0 @@
package runtime
import "core:os"
current_thread_id :: proc "contextless" () -> int {
return os.current_thread_id();
}
default_assertion_failure_proc :: proc(prefix, message: string, loc: Source_Code_Location) {
fd := os.stderr;
print_caller_location(fd, loc);
os.write_string(fd, " ");
os.write_string(fd, prefix);
if len(message) > 0 {
os.write_string(fd, ": ");
os.write_string(fd, message);
}
os.write_byte(fd, '\n');
debug_trap();
}

View File

@@ -1,8 +1,5 @@
package runtime
import "core:os"
bounds_trap :: proc "contextless" () -> ! {
when ODIN_OS == "windows" {
windows_trap_array_bounds();
@@ -24,13 +21,13 @@ bounds_check_error :: proc "contextless" (file: string, line, column: int, index
if 0 <= index && index < count do return;
handle_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
context = default_context();
fd := os.stderr;
fd := os_stderr();
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Index ");
print_string(fd, " Index ");
print_i64(fd, i64(index));
os.write_string(fd, " is out of bounds range 0:");
print_string(fd, " is out of bounds range 0:");
print_i64(fd, i64(count));
os.write_byte(fd, '\n');
print_byte(fd, '\n');
bounds_trap();
}
handle_error(file, line, column, index, count);
@@ -38,15 +35,15 @@ bounds_check_error :: proc "contextless" (file: string, line, column: int, index
slice_handle_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
context = default_context();
fd := os.stderr;
fd := os_stderr();
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid slice indices: ");
print_string(fd, " Invalid slice indices: ");
print_i64(fd, i64(lo));
os.write_string(fd, ":");
print_string(fd, ":");
print_i64(fd, i64(hi));
os.write_string(fd, ":");
print_string(fd, ":");
print_i64(fd, i64(len));
os.write_byte(fd, '\n');
print_byte(fd, '\n');
bounds_trap();
}
@@ -64,15 +61,15 @@ dynamic_array_expr_error :: proc "contextless" (file: string, line, column: int,
if 0 <= low && low <= high && high <= max do return;
handle_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
context = default_context();
fd := os.stderr;
fd := os_stderr();
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid dynamic array values: ");
print_string(fd, " Invalid dynamic array values: ");
print_i64(fd, i64(low));
os.write_string(fd, ":");
print_string(fd, ":");
print_i64(fd, i64(high));
os.write_string(fd, ":");
print_string(fd, ":");
print_i64(fd, i64(max));
os.write_byte(fd, '\n');
print_byte(fd, '\n');
bounds_trap();
}
handle_error(file, line, column, low, high, max);
@@ -83,13 +80,13 @@ type_assertion_check :: proc "contextless" (ok: bool, file: string, line, column
if ok do return;
handle_error :: proc "contextless" (file: string, line, column: int, from, to: typeid) {
context = default_context();
fd := os.stderr;
fd := os_stderr();
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid type assertion from ");
print_string(fd, " Invalid type assertion from ");
print_typeid(fd, from);
os.write_string(fd, " to ");
print_string(fd, " to ");
print_typeid(fd, to);
os.write_byte(fd, '\n');
print_byte(fd, '\n');
type_assertion_trap();
}
handle_error(file, line, column, from, to);
@@ -99,11 +96,11 @@ make_slice_error_loc :: inline proc "contextless" (loc := #caller_location, len:
if 0 <= len do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, len: int) {
context = default_context();
fd := os.stderr;
fd := os_stderr();
print_caller_location(fd, loc);
os.write_string(fd, " Invalid slice length for make: ");
print_string(fd, " Invalid slice length for make: ");
print_i64(fd, i64(len));
os.write_byte(fd, '\n');
print_byte(fd, '\n');
bounds_trap();
}
handle_error(loc, len);
@@ -113,13 +110,13 @@ make_dynamic_array_error_loc :: inline proc "contextless" (using loc := #caller_
if 0 <= len && len <= cap do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, len, cap: int) {
context = default_context();
fd := os.stderr;
fd := os_stderr();
print_caller_location(fd, loc);
os.write_string(fd, " Invalid dynamic array parameters for make: ");
print_string(fd, " Invalid dynamic array parameters for make: ");
print_i64(fd, i64(len));
os.write_byte(fd, ':');
print_byte(fd, ':');
print_i64(fd, i64(cap));
os.write_byte(fd, '\n');
print_byte(fd, '\n');
bounds_trap();
}
handle_error(loc, len, cap);
@@ -129,11 +126,11 @@ make_map_expr_error_loc :: inline proc "contextless" (loc := #caller_location, c
if 0 <= cap do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, cap: int) {
context = default_context();
fd := os.stderr;
fd := os_stderr();
print_caller_location(fd, loc);
os.write_string(fd, " Invalid map capacity for make: ");
print_string(fd, " Invalid map capacity for make: ");
print_i64(fd, i64(cap));
os.write_byte(fd, '\n');
print_byte(fd, '\n');
bounds_trap();
}
handle_error(loc, cap);

View File

@@ -0,0 +1,45 @@
package runtime
when ODIN_OS == "freestanding" {
_OS_Errno :: distinct int;
_OS_Handle :: distinct uintptr;
os_stdout :: proc "contextless" () -> _OS_Handle {
return 1;
}
os_stderr :: proc "contextless" () -> _OS_Handle {
return 2;
}
// TODO(bill): reimplement `os.write`
os_write :: proc(fd: _OS_Handle, data: []byte) -> (int, _OS_Errno) {
return 0, -1;
}
current_thread_id :: proc "contextless" () -> int {
return 0;
}
} else {
import "core:os"
_OS_Errno :: distinct int;
_OS_Handle :: os.Handle;
os_stdout :: proc "contextless" () -> _OS_Handle {
return os.stdout;
}
os_stderr :: proc "contextless" () -> _OS_Handle {
return os.stderr;
}
// TODO(bill): reimplement `os.write`
os_write :: proc(fd: _OS_Handle, data: []byte) -> (int, _OS_Errno) {
n, err := os.write(fd, data);
return int(n), _OS_Errno(err);
}
current_thread_id :: proc "contextless" () -> int {
return os.current_thread_id();
}
}

View File

@@ -1,9 +1,93 @@
package runtime
import "core:os"
_INTEGER_DIGITS :: "0123456789abcdefghijklmnopqrstuvwxyz";
print_u64 :: proc(fd: os.Handle, x: u64) {
digits := "0123456789";
encode_rune :: proc(c: rune) -> ([4]u8, int) {
r := c;
buf: [4]u8;
i := u32(r);
mask :: u8(0x3f);
if i <= 1<<7-1 {
buf[0] = u8(r);
return buf, 1;
}
if i <= 1<<11-1 {
buf[0] = 0xc0 | u8(r>>6);
buf[1] = 0x80 | u8(r) & mask;
return buf, 2;
}
// Invalid or Surrogate range
if i > 0x0010ffff ||
(0xd800 <= i && i <= 0xdfff) {
r = 0xfffd;
}
if i <= 1<<16-1 {
buf[0] = 0xe0 | u8(r>>12);
buf[1] = 0x80 | u8(r>>6) & mask;
buf[2] = 0x80 | u8(r) & mask;
return buf, 3;
}
buf[0] = 0xf0 | u8(r>>18);
buf[1] = 0x80 | u8(r>>12) & mask;
buf[2] = 0x80 | u8(r>>6) & mask;
buf[3] = 0x80 | u8(r) & mask;
return buf, 4;
}
print_string :: proc(fd: _OS_Handle, str: string) -> (int, _OS_Errno) {
return os_write(fd, transmute([]byte)str);
}
print_byte :: proc(fd: _OS_Handle, b: byte) -> (int, _OS_Errno) {
return os_write(fd, []byte{b});
}
print_encoded_rune :: proc(fd: _OS_Handle, r: rune) {
print_byte(fd, '\'');
switch r {
case '\a': print_string(fd, "\\a");
case '\b': print_string(fd, "\\b");
case '\e': print_string(fd, "\\e");
case '\f': print_string(fd, "\\f");
case '\n': print_string(fd, "\\n");
case '\r': print_string(fd, "\\r");
case '\t': print_string(fd, "\\t");
case '\v': print_string(fd, "\\v");
case:
if r <= 0 {
print_string(fd, "\\x00");
} else if r < 32 {
digits := _INTEGER_DIGITS;
n0, n1 := u8(r) >> 4, u8(r) & 0xf;
print_string(fd, "\\x");
print_byte(fd, digits[n0]);
print_byte(fd, digits[n1]);
} else {
print_rune(fd, r);
}
}
print_byte(fd, '\'');
}
print_rune :: proc(fd: _OS_Handle, r: rune) -> (int, _OS_Errno) {
RUNE_SELF :: 0x80;
if r < RUNE_SELF {
return print_byte(fd, byte(r));
}
b, n := encode_rune(r);
return os_write(fd, b[:n]);
}
print_u64 :: proc(fd: _OS_Handle, x: u64) {
digits := _INTEGER_DIGITS;
a: [129]byte;
i := len(a);
@@ -15,11 +99,12 @@ print_u64 :: proc(fd: os.Handle, x: u64) {
}
i -= 1; a[i] = digits[u % b];
os.write(fd, a[i:]);
os_write(fd, a[i:]);
}
print_i64 :: proc(fd: os.Handle, x: i64) {
digits := "0123456789";
print_i64 :: proc(fd: _OS_Handle, x: i64) {
digits := _INTEGER_DIGITS;
b :: i64(10);
u := x;
@@ -37,257 +122,257 @@ print_i64 :: proc(fd: os.Handle, x: i64) {
i -= 1; a[i] = '-';
}
os.write(fd, a[i:]);
os_write(fd, a[i:]);
}
print_caller_location :: proc(fd: os.Handle, using loc: Source_Code_Location) {
os.write_string(fd, file_path);
os.write_byte(fd, '(');
print_caller_location :: proc(fd: _OS_Handle, using loc: Source_Code_Location) {
print_string(fd, file_path);
print_byte(fd, '(');
print_u64(fd, u64(line));
os.write_byte(fd, ':');
print_byte(fd, ':');
print_u64(fd, u64(column));
os.write_byte(fd, ')');
print_byte(fd, ')');
}
print_typeid :: proc(fd: os.Handle, id: typeid) {
print_typeid :: proc(fd: _OS_Handle, id: typeid) {
if id == nil {
os.write_string(fd, "nil");
print_string(fd, "nil");
} else {
ti := type_info_of(id);
print_type(fd, ti);
}
}
print_type :: proc(fd: os.Handle, ti: ^Type_Info) {
print_type :: proc(fd: _OS_Handle, ti: ^Type_Info) {
if ti == nil {
os.write_string(fd, "nil");
print_string(fd, "nil");
return;
}
switch info in ti.variant {
case Type_Info_Named:
os.write_string(fd, info.name);
print_string(fd, info.name);
case Type_Info_Integer:
switch ti.id {
case int: os.write_string(fd, "int");
case uint: os.write_string(fd, "uint");
case uintptr: os.write_string(fd, "uintptr");
case int: print_string(fd, "int");
case uint: print_string(fd, "uint");
case uintptr: print_string(fd, "uintptr");
case:
os.write_byte(fd, 'i' if info.signed else 'u');
print_byte(fd, 'i' if info.signed else 'u');
print_u64(fd, u64(8*ti.size));
}
case Type_Info_Rune:
os.write_string(fd, "rune");
print_string(fd, "rune");
case Type_Info_Float:
os.write_byte(fd, 'f');
print_byte(fd, 'f');
print_u64(fd, u64(8*ti.size));
case Type_Info_Complex:
os.write_string(fd, "complex");
print_string(fd, "complex");
print_u64(fd, u64(8*ti.size));
case Type_Info_Quaternion:
os.write_string(fd, "quaternion");
print_string(fd, "quaternion");
print_u64(fd, u64(8*ti.size));
case Type_Info_String:
os.write_string(fd, "string");
print_string(fd, "string");
case Type_Info_Boolean:
switch ti.id {
case bool: os.write_string(fd, "bool");
case bool: print_string(fd, "bool");
case:
os.write_byte(fd, 'b');
print_byte(fd, 'b');
print_u64(fd, u64(8*ti.size));
}
case Type_Info_Any:
os.write_string(fd, "any");
print_string(fd, "any");
case Type_Info_Type_Id:
os.write_string(fd, "typeid");
print_string(fd, "typeid");
case Type_Info_Pointer:
if info.elem == nil {
os.write_string(fd, "rawptr");
print_string(fd, "rawptr");
} else {
os.write_string(fd, "^");
print_string(fd, "^");
print_type(fd, info.elem);
}
case Type_Info_Procedure:
os.write_string(fd, "proc");
print_string(fd, "proc");
if info.params == nil {
os.write_string(fd, "()");
print_string(fd, "()");
} else {
t := info.params.variant.(Type_Info_Tuple);
os.write_byte(fd, '(');
print_byte(fd, '(');
for t, i in t.types {
if i > 0 do os.write_string(fd, ", ");
if i > 0 do print_string(fd, ", ");
print_type(fd, t);
}
os.write_string(fd, ")");
print_string(fd, ")");
}
if info.results != nil {
os.write_string(fd, " -> ");
print_string(fd, " -> ");
print_type(fd, info.results);
}
case Type_Info_Tuple:
count := len(info.names);
if count != 1 do os.write_byte(fd, '(');
if count != 1 do print_byte(fd, '(');
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
if i > 0 do print_string(fd, ", ");
t := info.types[i];
if len(name) > 0 {
os.write_string(fd, name);
os.write_string(fd, ": ");
print_string(fd, name);
print_string(fd, ": ");
}
print_type(fd, t);
}
if count != 1 do os.write_string(fd, ")");
if count != 1 do print_string(fd, ")");
case Type_Info_Array:
os.write_byte(fd, '[');
print_byte(fd, '[');
print_u64(fd, u64(info.count));
os.write_byte(fd, ']');
print_byte(fd, ']');
print_type(fd, info.elem);
case Type_Info_Enumerated_Array:
os.write_byte(fd, '[');
print_byte(fd, '[');
print_type(fd, info.index);
os.write_byte(fd, ']');
print_byte(fd, ']');
print_type(fd, info.elem);
case Type_Info_Dynamic_Array:
os.write_string(fd, "[dynamic]");
print_string(fd, "[dynamic]");
print_type(fd, info.elem);
case Type_Info_Slice:
os.write_string(fd, "[]");
print_string(fd, "[]");
print_type(fd, info.elem);
case Type_Info_Map:
os.write_string(fd, "map[");
print_string(fd, "map[");
print_type(fd, info.key);
os.write_byte(fd, ']');
print_byte(fd, ']');
print_type(fd, info.value);
case Type_Info_Struct:
switch info.soa_kind {
case .None: // Ignore
case .Fixed:
os.write_string(fd, "#soa[");
print_string(fd, "#soa[");
print_u64(fd, u64(info.soa_len));
os.write_byte(fd, ']');
print_byte(fd, ']');
print_type(fd, info.soa_base_type);
return;
case .Slice:
os.write_string(fd, "#soa[]");
print_string(fd, "#soa[]");
print_type(fd, info.soa_base_type);
return;
case .Dynamic:
os.write_string(fd, "#soa[dynamic]");
print_string(fd, "#soa[dynamic]");
print_type(fd, info.soa_base_type);
return;
}
os.write_string(fd, "struct ");
if info.is_packed do os.write_string(fd, "#packed ");
if info.is_raw_union do os.write_string(fd, "#raw_union ");
print_string(fd, "struct ");
if info.is_packed do print_string(fd, "#packed ");
if info.is_raw_union do print_string(fd, "#raw_union ");
if info.custom_align {
os.write_string(fd, "#align ");
print_string(fd, "#align ");
print_u64(fd, u64(ti.align));
os.write_byte(fd, ' ');
print_byte(fd, ' ');
}
os.write_byte(fd, '{');
print_byte(fd, '{');
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
os.write_string(fd, ": ");
if i > 0 do print_string(fd, ", ");
print_string(fd, name);
print_string(fd, ": ");
print_type(fd, info.types[i]);
}
os.write_byte(fd, '}');
print_byte(fd, '}');
case Type_Info_Union:
os.write_string(fd, "union ");
print_string(fd, "union ");
if info.custom_align {
os.write_string(fd, "#align ");
print_string(fd, "#align ");
print_u64(fd, u64(ti.align));
}
if info.no_nil {
os.write_string(fd, "#no_nil ");
print_string(fd, "#no_nil ");
}
os.write_byte(fd, '{');
print_byte(fd, '{');
for variant, i in info.variants {
if i > 0 do os.write_string(fd, ", ");
if i > 0 do print_string(fd, ", ");
print_type(fd, variant);
}
os.write_string(fd, "}");
print_string(fd, "}");
case Type_Info_Enum:
os.write_string(fd, "enum ");
print_string(fd, "enum ");
print_type(fd, info.base);
os.write_string(fd, " {");
print_string(fd, " {");
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
if i > 0 do print_string(fd, ", ");
print_string(fd, name);
}
os.write_string(fd, "}");
print_string(fd, "}");
case Type_Info_Bit_Field:
os.write_string(fd, "bit_field ");
print_string(fd, "bit_field ");
if ti.align != 1 {
os.write_string(fd, "#align ");
print_string(fd, "#align ");
print_u64(fd, u64(ti.align));
os.write_byte(fd, ' ');
print_byte(fd, ' ');
}
os.write_string(fd, " {");
print_string(fd, " {");
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
os.write_string(fd, ": ");
if i > 0 do print_string(fd, ", ");
print_string(fd, name);
print_string(fd, ": ");
print_u64(fd, u64(info.bits[i]));
}
os.write_string(fd, "}");
print_string(fd, "}");
case Type_Info_Bit_Set:
os.write_string(fd, "bit_set[");
print_string(fd, "bit_set[");
#partial switch elem in type_info_base(info.elem).variant {
case Type_Info_Enum:
print_type(fd, info.elem);
case Type_Info_Rune:
os.write_encoded_rune(fd, rune(info.lower));
os.write_string(fd, "..");
os.write_encoded_rune(fd, rune(info.upper));
print_encoded_rune(fd, rune(info.lower));
print_string(fd, "..");
print_encoded_rune(fd, rune(info.upper));
case:
print_i64(fd, info.lower);
os.write_string(fd, "..");
print_string(fd, "..");
print_i64(fd, info.upper);
}
if info.underlying != nil {
os.write_string(fd, "; ");
print_string(fd, "; ");
print_type(fd, info.underlying);
}
os.write_byte(fd, ']');
print_byte(fd, ']');
case Type_Info_Opaque:
os.write_string(fd, "opaque ");
print_string(fd, "opaque ");
print_type(fd, info.elem);
case Type_Info_Simd_Vector:
if info.is_x86_mmx {
os.write_string(fd, "intrinsics.x86_mmx");
print_string(fd, "intrinsics.x86_mmx");
} else {
os.write_string(fd, "#simd[");
print_string(fd, "#simd[");
print_u64(fd, u64(info.count));
os.write_byte(fd, ']');
print_byte(fd, ']');
print_type(fd, info.elem);
}
case Type_Info_Relative_Pointer:
os.write_string(fd, "#relative(");
print_string(fd, "#relative(");
print_type(fd, info.base_integer);
os.write_string(fd, ") ");
print_string(fd, ") ");
print_type(fd, info.pointer);
case Type_Info_Relative_Slice:
os.write_string(fd, "#relative(");
print_string(fd, "#relative(");
print_type(fd, info.base_integer);
os.write_string(fd, ") ");
print_string(fd, ") ");
print_type(fd, info.slice);
}
}