This commit is contained in:
gingerBill
2021-08-15 11:08:35 +01:00
10 changed files with 614 additions and 35 deletions

View File

@@ -9,9 +9,7 @@ package math_big
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
This file collects public proc maps and their aliases.
/*
*/
=== === === === === === === === === === === === === === === === === === === === === === === ===
Basic arithmetic.
See `public.odin`.

View File

@@ -1,8 +1,8 @@
@echo off
odin run . -vet
:odin run . -vet
: -o:size
:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:size && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:speed && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:size -define:MATH_BIG_EXE=false && python test.py -fast-tests
odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
:odin build . -build-mode:shared -show-timings -o:speed -define:MATH_BIG_EXE=false && python test.py -fast-tests

View File

@@ -27,10 +27,22 @@ import "core:intrinsics"
`initialize_constants` also replaces the other `_DEFAULT_*` cutoffs with custom compile-time values if so `#config`ured.
*/
MUL_KARATSUBA_CUTOFF := initialize_constants();
SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
MUL_TOOM_CUTOFF := _DEFAULT_MUL_TOOM_CUTOFF;
SQR_TOOM_CUTOFF := _DEFAULT_SQR_TOOM_CUTOFF;
/*
There is a bug with DLL globals. They don't get set.
To allow tests to run we add `-define:MATH_BIG_EXE=false` to hardcode the cutoffs for now.
*/
when #config(MATH_BIG_EXE, true) {
MUL_KARATSUBA_CUTOFF := initialize_constants();
SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
MUL_TOOM_CUTOFF := _DEFAULT_MUL_TOOM_CUTOFF;
SQR_TOOM_CUTOFF := _DEFAULT_SQR_TOOM_CUTOFF;
} else {
MUL_KARATSUBA_CUTOFF := _DEFAULT_MUL_KARATSUBA_CUTOFF;
SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
MUL_TOOM_CUTOFF := _DEFAULT_MUL_TOOM_CUTOFF;
SQR_TOOM_CUTOFF := _DEFAULT_SQR_TOOM_CUTOFF;
}
/*
These defaults were tuned on an AMD A8-6600K (64-bit) using libTomMath's `make tune`.

View File

@@ -206,19 +206,16 @@ demo :: proc() {
a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(a, b, c, d, e, f);
set(a, 64336);
fmt.println("--- --- --- ---");
int_to_byte(a);
fmt.println("--- --- --- ---");
int_to_byte_little(a);
fmt.println("--- --- --- ---");
atoi(a, "12980742146337069150589594264770969721", 10);
print("a: ", a, 10, true, true, true);
atoi(b, "4611686018427387904", 10);
print("b: ", b, 10, true, true, true);
set(b, -64336);
fmt.println("--- --- --- ---");
int_to_byte(b);
fmt.println("--- --- --- ---");
int_to_byte_little(b);
fmt.println("--- --- --- ---");
if err := internal_divmod(c, d, a, b); err != nil {
fmt.printf("Error: %v\n", err);
}
print("c: ", c);
print("c: ", d);
}
main :: proc() {

View File

@@ -36,6 +36,8 @@ import "core:mem"
import "core:intrinsics"
import rnd "core:math/rand"
import "core:fmt"
/*
Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7.
@@ -260,6 +262,12 @@ internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context
}
internal_add :: proc { internal_int_add_signed, internal_int_add_digit, };
internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_add(dest, dest, 1);
}
internal_incr :: proc { internal_int_incr, };
/*
Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
Handbook of Applied Cryptography, algorithm 14.9.
@@ -458,6 +466,11 @@ internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := co
internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, };
internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_sub(dest, dest, 1);
}
internal_decr :: proc { internal_int_decr, };
/*
dest = src / 2
dest = src >> 1
@@ -703,7 +716,6 @@ internal_sqr :: proc (dest, src: ^Int, allocator := context.allocator) -> (res:
*/
internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
if denominator.used == 0 { return .Division_by_Zero; }
/*
If numerator < denominator then quotient = 0, remainder = numerator.
@@ -718,8 +730,10 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
return nil;
}
if false && (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
// err = _int_div_recursive(quotient, remainder, numerator, denominator);
if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used / 3) * 2) {
assert(denominator.used >= 160 && numerator.used >= 240, "MUL_KARATSUBA_CUTOFF global not properly set.");
err = _private_int_div_recursive(quotient, remainder, numerator, denominator);
// err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
} else {
when true {
err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
@@ -1740,6 +1754,29 @@ internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (er
}
internal_neg :: proc { internal_int_neg, };
/*
hac 14.61, pp608.
*/
internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
/*
For all n in N and n > 0, n = 0 mod 1.
*/
if internal_is_positive(a) && internal_cmp(b, 1) == 0 { return internal_zero(dest); }
/*
`b` cannot be negative and has to be > 1
*/
if internal_is_negative(b) && internal_cmp(b, 1) != 1 { return .Invalid_Argument; }
/*
If the modulus is odd we can use a faster routine instead.
*/
if internal_is_odd(b) { return _private_inverse_modulo_odd(dest, a, b); }
return _private_inverse_modulo(dest, a, b);
}
internal_invmod :: proc{ internal_int_inverse_modulo, };
/*
Helpers to extract values from the `Int`.
@@ -1991,7 +2028,11 @@ internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: T, err: Error) where intr
internal_get :: proc { internal_int_get, };
internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) {
l := min(a.used, 17); // log2(max(f64)) is approximately 1020, or 17 legs.
/*
log2(max(f64)) is approximately 1020, or 17 legs with the 64-bit storage.
*/
legs :: 1020 / _DIGIT_BITS;
l := min(a.used, legs);
fac := f64(1 << _DIGIT_BITS);
d := 0.0;

View File

@@ -31,3 +31,48 @@ int_prime_is_divisible :: proc(a: ^Int, allocator := context.allocator) -> (res:
*/
return false, nil;
}
number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {
switch {
case bit_size <= 80:
return - 1; /* Use deterministic algorithm for size <= 80 bits */
case bit_size >= 81 && bit_size < 96:
return 37; /* max. error = 2^(-96) */
case bit_size >= 96 && bit_size < 128:
return 32; /* max. error = 2^(-96) */
case bit_size >= 128 && bit_size < 160:
return 40; /* max. error = 2^(-112) */
case bit_size >= 160 && bit_size < 256:
return 35; /* max. error = 2^(-112) */
case bit_size >= 256 && bit_size < 384:
return 27; /* max. error = 2^(-128) */
case bit_size >= 384 && bit_size < 512:
return 16; /* max. error = 2^(-128) */
case bit_size >= 512 && bit_size < 768:
return 18; /* max. error = 2^(-160) */
case bit_size >= 768 && bit_size < 896:
return 11; /* max. error = 2^(-160) */
case bit_size >= 896 && bit_size < 1_024:
return 10; /* max. error = 2^(-160) */
case bit_size >= 1_024 && bit_size < 1_536:
return 12; /* max. error = 2^(-192) */
case bit_size >= 1_536 && bit_size < 2_048:
return 8; /* max. error = 2^(-192) */
case bit_size >= 2_048 && bit_size < 3_072:
return 6; /* max. error = 2^(-192) */
case bit_size >= 3_072 && bit_size < 4_096:
return 4; /* max. error = 2^(-192) */
case bit_size >= 4_096 && bit_size < 5_120:
return 5; /* max. error = 2^(-256) */
case bit_size >= 5_120 && bit_size < 6_144:
return 4; /* max. error = 2^(-256) */
case bit_size >= 6_144 && bit_size < 8_192:
return 4; /* max. error = 2^(-256) */
case bit_size >= 8_192 && bit_size < 9_216:
return 3; /* max. error = 2^(-256) */
case bit_size >= 9_216 && bit_size < 10_240:
return 3; /* max. error = 2^(-256) */
case:
return 2; /* For keysizes bigger than 10_240 use always at least 2 Rounds */
}
}

View File

@@ -430,7 +430,7 @@ _private_int_sqr_toom :: proc(dest, src: ^Int, allocator := context.allocator) -
context.allocator = allocator;
S0, a0, a1, a2 := &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(S0, a0, a1, a2);
defer internal_destroy(S0, a0, a1, a2);
/*
Init temps.
@@ -752,6 +752,188 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
return nil;
}
/*
Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from:
Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
Vol. 18. Cambridge University Press, 2010
Available online at https://arxiv.org/pdf/1004.4710
pages 19ff. in the above online document.
*/
_private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
A1, A2, B1, B0, Q1, Q0, R1, R0, t := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer internal_destroy(A1, A2, B1, B0, Q1, Q0, R1, R0, t);
m := a.used - b.used;
k := m / 2;
if m < MUL_KARATSUBA_CUTOFF { return _private_int_div_school(quotient, remainder, a, b); }
if err = internal_init_multi(A1, A2, B1, B0, Q1, Q0, R1, R0, t); err != nil { return err; }
/*
`B1` = `b` / `beta`^`k`, `B0` = `b` % `beta`^`k`
*/
if err = internal_shrmod(B1, B0, b, k * _DIGIT_BITS); err != nil { return err; }
/*
(Q1, R1) = RecursiveDivRem(A / beta^(2k), B1)
*/
if err = internal_shrmod(A1, t, a, 2 * k * _DIGIT_BITS); err != nil { return err; }
if err = _private_div_recursion(Q1, R1, A1, B1); err != nil { return err; }
/*
A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k)
*/
if err = internal_shl_digit(R1, 2 * k); err != nil { return err; }
if err = internal_add(A1, R1, t); err != nil { return err; }
if err = internal_mul(t, Q1, B0); err != nil { return err; }
/*
While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
*/
if internal_cmp(A1, 0) == -1 {
if internal_shl(t, b, k * _DIGIT_BITS); err != nil { return err; }
for {
if err = internal_decr(Q1); err != nil { return err; }
if err = internal_add(A1, A1, t); err != nil { return err; }
if internal_cmp(A1, 0) != -1 { break; }
}
}
/*
(Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1)
*/
if internal_shrmod(A1, t, A1, k * _DIGIT_BITS); err != nil { return err; }
if _private_div_recursion(Q0, R0, A1, B1); err != nil { return err; }
/*
A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0)
*/
if err = internal_shl_digit(R0, k); err != nil { return err; }
if err = internal_add(A2, R0, t); err != nil { return err; }
if err = internal_mul(t, Q0, B0); err != nil { return err; }
if err = internal_sub(A2, A2, t); err != nil { return err; }
/*
While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
*/
for internal_cmp(A2, 0) == -1 {
if err = internal_decr(Q0); err != nil { return err; }
if err = internal_add(A2, A2, b); err != nil { return err; }
}
/*
Return q = (Q1*beta^k) + Q0, r = A2.
*/
if err = internal_shl_digit(Q1, k); err != nil { return err; }
if err = internal_add(quotient, Q1, Q0); err != nil { return err; }
return internal_copy(remainder, A2);
}
_private_int_div_recursive :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
A, B, Q, Q1, R, A_div, A_mod := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer internal_destroy(A, B, Q, Q1, R, A_div, A_mod);
if err = internal_init_multi(A, B, Q, Q1, R, A_div, A_mod); err != nil { return err; }
/*
Most significant bit of a limb.
Assumes _DIGIT_MAX < (sizeof(DIGIT) * sizeof(u8)).
*/
msb := (_DIGIT_MAX + DIGIT(1)) >> 1;
sigma := 0;
msb_b := b.digit[b.used - 1];
for msb_b < msb {
sigma += 1;
msb_b <<= 1;
}
/*
Use that sigma to normalize B.
*/
if err = internal_shl(B, b, sigma); err != nil { return err; }
if err = internal_shl(A, a, sigma); err != nil { return err; }
/*
Fix the sign.
*/
neg := a.sign != b.sign;
A.sign = .Zero_or_Positive; B.sign = .Zero_or_Positive;
/*
If the magnitude of "A" is not more more than twice that of "B" we can work
on them directly, otherwise we need to work at "A" in chunks.
*/
n := B.used;
m := A.used - B.used;
/*
Q = 0. We already ensured that when we called `internal_init_multi`.
*/
for m > n {
/*
(q, r) = RecursiveDivRem(A / (beta^(m-n)), B)
*/
j := (m - n) * _DIGIT_BITS;
if err = internal_shrmod(A_div, A_mod, A, j); err != nil { return err; }
if err = _private_div_recursion(Q1, R, A_div, B); err != nil { return err; }
/*
Q = (Q*beta!(n)) + q
*/
if err = internal_shl(Q, Q, n * _DIGIT_BITS); err != nil { return err; }
if err = internal_add(Q, Q, Q1); err != nil { return err; }
/*
A = (r * beta^(m-n)) + (A % beta^(m-n))
*/
if err = internal_shl(R, R, (m - n) * _DIGIT_BITS); err != nil { return err; }
if err = internal_add(A, R, A_mod); err != nil { return err; }
/*
m = m - n
*/
m -= n;
}
/*
(q, r) = RecursiveDivRem(A, B)
*/
if err = _private_div_recursion(Q1, R, A, B); err != nil { return err; }
/*
Q = (Q * beta^m) + q, R = r
*/
if err = internal_shl(Q, Q, m * _DIGIT_BITS); err != nil { return err; }
if err = internal_add(Q, Q, Q1); err != nil { return err; }
/*
Get sign before writing to dest.
*/
R.sign = .Zero_or_Positive if internal_is_zero(Q) else a.sign;
if quotient != nil {
swap(quotient, Q);
quotient.sign = .Negative if neg else .Zero_or_Positive;
}
if remainder != nil {
/*
De-normalize the remainder.
*/
if err = internal_shrmod(R, nil, R, sigma); err != nil { return err; }
swap(remainder, R);
}
return nil;
}
/*
Slower bit-bang division... also smaller.
*/
@@ -1040,7 +1222,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
*/
_private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
defer internal_destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
ic := #force_inline internal_cmp(a, base);
if ic == -1 || ic == 0 {
@@ -1100,6 +1282,300 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
return;
}
/*
hac 14.61, pp608
*/
_private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
x, y, u, v, A, B, C, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer internal_destroy(x, y, u, v, A, B, C, D);
/*
`b` cannot be negative.
*/
if b.sign == .Negative || internal_is_zero(b) { return .Invalid_Argument; }
/*
init temps.
*/
if err = internal_init_multi(x, y, u, v, A, B, C, D); err != nil { return err; }
/*
`x` = `a` % `b`, `y` = `b`
*/
if err = internal_mod(x, a, b); err != nil { return err; }
if err = internal_copy(y, b); err != nil { return err; }
/*
2. [modified] if x,y are both even then return an error!
*/
if internal_is_even(x) && internal_is_even(y) { return .Invalid_Argument; }
/*
3. u=x, v=y, A=1, B=0, C=0, D=1
*/
if err = internal_copy(u, x); err != nil { return err; }
if err = internal_copy(v, y); err != nil { return err; }
if err = internal_one(A); err != nil { return err; }
if err = internal_one(D); err != nil { return err; }
for {
/*
4. while `u` is even do:
*/
for internal_is_even(u) {
/*
4.1 `u` = `u` / 2
*/
if err = internal_int_shr1(u, u); err != nil { return err; }
/*
4.2 if `A` or `B` is odd then:
*/
if internal_is_odd(A) || internal_is_odd(B) {
/*
`A` = (`A`+`y`) / 2, `B` = (`B`-`x`) / 2
*/
if err = internal_add(A, A, y); err != nil { return err; }
if err = internal_add(B, B, x); err != nil { return err; }
}
/*
`A` = `A` / 2, `B` = `B` / 2
*/
if err = internal_int_shr1(A, A); err != nil { return err; }
if err = internal_int_shr1(B, B); err != nil { return err; }
}
/*
5. while `v` is even do:
*/
for internal_is_even(v) {
/*
5.1 `v` = `v` / 2
*/
if err = internal_int_shr1(v, v); err != nil { return err; }
/*
5.2 if `C` or `D` is odd then:
*/
if internal_is_odd(C) || internal_is_odd(D) {
/*
`C` = (`C`+`y`) / 2, `D` = (`D`-`x`) / 2
*/
if err = internal_add(C, C, y); err != nil { return err; }
if err = internal_add(D, D, x); err != nil { return err; }
}
/*
`C` = `C` / 2, `D` = `D` / 2
*/
if err = internal_int_shr1(C, C); err != nil { return err; }
if err = internal_int_shr1(D, D); err != nil { return err; }
}
/*
6. if `u` >= `v` then:
*/
if internal_cmp(u, v) != -1 {
/*
`u` = `u` - `v`, `A` = `A` - `C`, `B` = `B` - `D`
*/
if err = internal_sub(u, u, v); err != nil { return err; }
if err = internal_sub(A, A, C); err != nil { return err; }
if err = internal_sub(B, B, D); err != nil { return err; }
} else {
/* v - v - u, C = C - A, D = D - B */
if err = internal_sub(v, v, u); err != nil { return err; }
if err = internal_sub(C, C, A); err != nil { return err; }
if err = internal_sub(D, D, B); err != nil { return err; }
}
/*
If not zero goto step 4
*/
if internal_is_zero(u) { break; }
}
/*
Now `a` = `C`, `b` = `D`, `gcd` == `g`*`v`
*/
/*
If `v` != `1` then there is no inverse.
*/
if internal_cmp(v, 1) != 0 { return .Invalid_Argument; }
/*
If its too low.
*/
if internal_cmp(C, 0) == -1 {
if err = internal_add(C, C, b); err != nil { return err; }
}
/*
Too big.
*/
if internal_cmp(C, 0) != -1 {
if err = internal_sub(C, C, b); err != nil { return err; }
}
/*
`C` is now the inverse.
*/
swap(dest, C);
return;
}
/*
Computes the modular inverse via binary extended Euclidean algorithm, that is `dest` = 1 / `a` mod `b`.
Based on slow invmod except this is optimized for the case where `b` is odd,
as per HAC Note 14.64 on pp. 610.
*/
_private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
x, y, u, v, B, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer internal_destroy(x, y, u, v, B, D);
sign: Sign;
/*
2. [modified] `b` must be odd.
*/
if internal_is_even(b) { return .Invalid_Argument; }
/*
Init all our temps.
*/
if err = internal_init_multi(x, y, u, v, B, D); err != nil { return err; }
/*
`x` == modulus, `y` == value to invert.
*/
if err = internal_copy(x, b); err != nil { return err; }
/*
We need `y` = `|a|`.
*/
if err = internal_mod(y, a, b); err != nil { return err; }
/*
If one of `x`, `y` is zero return an error!
*/
if internal_is_zero(x) || internal_is_zero(y) { return .Invalid_Argument; }
/*
3. `u` = `x`, `v` = `y`, `A` = 1, `B` = 0, `C` = 0, `D` = 1
*/
if err = internal_copy(u, x); err != nil { return err; }
if err = internal_copy(v, y); err != nil { return err; }
if err = internal_one(D); err != nil { return err; }
for {
/*
4. while `u` is even do.
*/
for internal_is_even(u) {
/*
4.1 `u` = `u` / 2
*/
if err = internal_int_shr1(u, u); err != nil { return err; }
/*
4.2 if `B` is odd then:
*/
if internal_is_odd(B) {
/*
`B` = (`B` - `x`) / 2
*/
if err = internal_sub(B, B, x); err != nil { return err; }
}
/*
`B` = `B` / 2
*/
if err = internal_int_shr1(B, B); err != nil { return err; }
}
/*
5. while `v` is even do:
*/
for internal_is_even(v) {
/*
5.1 `v` = `v` / 2
*/
if err = internal_int_shr1(v, v); err != nil { return err; }
/*
5.2 if `D` is odd then:
*/
if internal_is_odd(D) {
/*
`D` = (`D` - `x`) / 2
*/
if err = internal_sub(D, D, x); err != nil { return err; }
}
/*
`D` = `D` / 2
*/
if err = internal_int_shr1(D, D); err != nil { return err; }
}
/*
6. if `u` >= `v` then:
*/
if internal_cmp(u, v) != -1 {
/*
`u` = `u` - `v`, `B` = `B` - `D`
*/
if err = internal_sub(u, u, v); err != nil { return err; }
if err = internal_sub(B, B, D); err != nil { return err; }
} else {
/*
`v` - `v` - `u`, `D` = `D` - `B`
*/
if err = internal_sub(v, v, u); err != nil { return err; }
if err = internal_sub(D, D, B); err != nil { return err; }
}
/*
If not zero goto step 4.
*/
if internal_is_zero(u) { break; }
}
/*
Now `a` = C, `b` = D, gcd == g*v
*/
/*
if `v` != 1 then there is no inverse
*/
if internal_cmp(v, 1) != 0 { return .Invalid_Argument; }
/*
`b` is now the inverse.
*/
sign = a.sign;
for internal_int_is_negative(D) {
if err = internal_add(D, D, b); err != nil { return err; }
}
/*
Too big.
*/
for internal_cmp_mag(D, b) != -1 {
if err = internal_sub(D, D, b); err != nil { return err; }
}
swap(dest, D);
dest.sign = sign;
return nil;
}
/*
Returns the log2 of an `Int`.
Assumes `a` not to be `nil` and to have been initialized.

View File

@@ -26,7 +26,9 @@ PyRes :: struct {
@export test_initialize_constants :: proc "c" () -> (res: u64) {
context = runtime.default_context();
return u64(initialize_constants());
res = u64(initialize_constants());
//assert(MUL_KARATSUBA_CUTOFF >= 40);
return res;
}
@export test_error_string :: proc "c" (err: Error) -> (res: cstring) {

View File

@@ -66,6 +66,8 @@ timed_or_fast.add_argument(
args = parser.parse_args()
EXIT_ON_FAIL = args.exit_on_fail
#
# How many iterations of each random test do we want to run?
#
@@ -153,7 +155,7 @@ class Res(Structure):
_fields_ = [("res", c_char_p), ("err", c_uint64)]
initialize_constants = load(l.test_initialize_constants, [], c_uint64)
initialize_constants()
print("initialize_constants: ", initialize_constants())
error_string = load(l.test_error_string, [c_byte], c_char_p)
@@ -211,7 +213,7 @@ def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expecte
print(error, flush=True)
passed = False
if args.exit_on_fail and not passed: exit(res.err)
if EXIT_ON_FAIL and not passed: exit(res.err)
return passed
@@ -257,7 +259,7 @@ def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
try:
res = sqr(*args)
except OSError as e:
print("{} while trying to square {} x {}.".format(e, a))
print("{} while trying to square {}.".format(e, a))
if EXIT_ON_FAIL: exit(3)
return False
@@ -268,7 +270,12 @@ def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
def test_div(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = div(*args)
try:
res = div(*args)
except OSError as e:
print("{} while trying divide to {} / {}.".format(e, a, b))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
#

View File

@@ -23,6 +23,7 @@ Category :: enum {
ctz,
sqr,
bitfield_extract,
rm_trials,
};
Event :: struct {