mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 17:34:34 +00:00
Merge branch 'master' of https://github.com/odin-lang/Odin
This commit is contained in:
@@ -9,9 +9,7 @@ package math_big
|
||||
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
|
||||
|
||||
This file collects public proc maps and their aliases.
|
||||
/*
|
||||
|
||||
*/
|
||||
=== === === === === === === === === === === === === === === === === === === === === === === ===
|
||||
Basic arithmetic.
|
||||
See `public.odin`.
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
@echo off
|
||||
odin run . -vet
|
||||
:odin run . -vet
|
||||
: -o:size
|
||||
:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:size && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:speed && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:size -define:MATH_BIG_EXE=false && python test.py -fast-tests
|
||||
odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
|
||||
:odin build . -build-mode:shared -show-timings -o:speed -define:MATH_BIG_EXE=false && python test.py -fast-tests
|
||||
@@ -27,10 +27,22 @@ import "core:intrinsics"
|
||||
`initialize_constants` also replaces the other `_DEFAULT_*` cutoffs with custom compile-time values if so `#config`ured.
|
||||
|
||||
*/
|
||||
MUL_KARATSUBA_CUTOFF := initialize_constants();
|
||||
SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
|
||||
MUL_TOOM_CUTOFF := _DEFAULT_MUL_TOOM_CUTOFF;
|
||||
SQR_TOOM_CUTOFF := _DEFAULT_SQR_TOOM_CUTOFF;
|
||||
|
||||
/*
|
||||
There is a bug with DLL globals. They don't get set.
|
||||
To allow tests to run we add `-define:MATH_BIG_EXE=false` to hardcode the cutoffs for now.
|
||||
*/
|
||||
when #config(MATH_BIG_EXE, true) {
|
||||
MUL_KARATSUBA_CUTOFF := initialize_constants();
|
||||
SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
|
||||
MUL_TOOM_CUTOFF := _DEFAULT_MUL_TOOM_CUTOFF;
|
||||
SQR_TOOM_CUTOFF := _DEFAULT_SQR_TOOM_CUTOFF;
|
||||
} else {
|
||||
MUL_KARATSUBA_CUTOFF := _DEFAULT_MUL_KARATSUBA_CUTOFF;
|
||||
SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
|
||||
MUL_TOOM_CUTOFF := _DEFAULT_MUL_TOOM_CUTOFF;
|
||||
SQR_TOOM_CUTOFF := _DEFAULT_SQR_TOOM_CUTOFF;
|
||||
}
|
||||
|
||||
/*
|
||||
These defaults were tuned on an AMD A8-6600K (64-bit) using libTomMath's `make tune`.
|
||||
|
||||
@@ -206,19 +206,16 @@ demo :: proc() {
|
||||
a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(a, b, c, d, e, f);
|
||||
|
||||
set(a, 64336);
|
||||
fmt.println("--- --- --- ---");
|
||||
int_to_byte(a);
|
||||
fmt.println("--- --- --- ---");
|
||||
int_to_byte_little(a);
|
||||
fmt.println("--- --- --- ---");
|
||||
atoi(a, "12980742146337069150589594264770969721", 10);
|
||||
print("a: ", a, 10, true, true, true);
|
||||
atoi(b, "4611686018427387904", 10);
|
||||
print("b: ", b, 10, true, true, true);
|
||||
|
||||
set(b, -64336);
|
||||
fmt.println("--- --- --- ---");
|
||||
int_to_byte(b);
|
||||
fmt.println("--- --- --- ---");
|
||||
int_to_byte_little(b);
|
||||
fmt.println("--- --- --- ---");
|
||||
if err := internal_divmod(c, d, a, b); err != nil {
|
||||
fmt.printf("Error: %v\n", err);
|
||||
}
|
||||
print("c: ", c);
|
||||
print("c: ", d);
|
||||
}
|
||||
|
||||
main :: proc() {
|
||||
|
||||
@@ -36,6 +36,8 @@ import "core:mem"
|
||||
import "core:intrinsics"
|
||||
import rnd "core:math/rand"
|
||||
|
||||
import "core:fmt"
|
||||
|
||||
/*
|
||||
Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7.
|
||||
|
||||
@@ -260,6 +262,12 @@ internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context
|
||||
}
|
||||
internal_add :: proc { internal_int_add_signed, internal_int_add_digit, };
|
||||
|
||||
|
||||
internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
return #force_inline internal_add(dest, dest, 1);
|
||||
}
|
||||
internal_incr :: proc { internal_int_incr, };
|
||||
|
||||
/*
|
||||
Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
|
||||
Handbook of Applied Cryptography, algorithm 14.9.
|
||||
@@ -458,6 +466,11 @@ internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := co
|
||||
|
||||
internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, };
|
||||
|
||||
internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
return #force_inline internal_sub(dest, dest, 1);
|
||||
}
|
||||
internal_decr :: proc { internal_int_decr, };
|
||||
|
||||
/*
|
||||
dest = src / 2
|
||||
dest = src >> 1
|
||||
@@ -703,7 +716,6 @@ internal_sqr :: proc (dest, src: ^Int, allocator := context.allocator) -> (res:
|
||||
*/
|
||||
internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
if denominator.used == 0 { return .Division_by_Zero; }
|
||||
/*
|
||||
If numerator < denominator then quotient = 0, remainder = numerator.
|
||||
@@ -718,8 +730,10 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
|
||||
return nil;
|
||||
}
|
||||
|
||||
if false && (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
|
||||
// err = _int_div_recursive(quotient, remainder, numerator, denominator);
|
||||
if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used / 3) * 2) {
|
||||
assert(denominator.used >= 160 && numerator.used >= 240, "MUL_KARATSUBA_CUTOFF global not properly set.");
|
||||
err = _private_int_div_recursive(quotient, remainder, numerator, denominator);
|
||||
// err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
|
||||
} else {
|
||||
when true {
|
||||
err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
|
||||
@@ -1740,6 +1754,29 @@ internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (er
|
||||
}
|
||||
internal_neg :: proc { internal_int_neg, };
|
||||
|
||||
/*
|
||||
hac 14.61, pp608.
|
||||
*/
|
||||
internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
/*
|
||||
For all n in N and n > 0, n = 0 mod 1.
|
||||
*/
|
||||
if internal_is_positive(a) && internal_cmp(b, 1) == 0 { return internal_zero(dest); }
|
||||
|
||||
/*
|
||||
`b` cannot be negative and has to be > 1
|
||||
*/
|
||||
if internal_is_negative(b) && internal_cmp(b, 1) != 1 { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
If the modulus is odd we can use a faster routine instead.
|
||||
*/
|
||||
if internal_is_odd(b) { return _private_inverse_modulo_odd(dest, a, b); }
|
||||
|
||||
return _private_inverse_modulo(dest, a, b);
|
||||
}
|
||||
internal_invmod :: proc{ internal_int_inverse_modulo, };
|
||||
|
||||
/*
|
||||
Helpers to extract values from the `Int`.
|
||||
@@ -1991,7 +2028,11 @@ internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: T, err: Error) where intr
|
||||
internal_get :: proc { internal_int_get, };
|
||||
|
||||
internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) {
|
||||
l := min(a.used, 17); // log2(max(f64)) is approximately 1020, or 17 legs.
|
||||
/*
|
||||
log2(max(f64)) is approximately 1020, or 17 legs with the 64-bit storage.
|
||||
*/
|
||||
legs :: 1020 / _DIGIT_BITS;
|
||||
l := min(a.used, legs);
|
||||
fac := f64(1 << _DIGIT_BITS);
|
||||
d := 0.0;
|
||||
|
||||
|
||||
@@ -31,3 +31,48 @@ int_prime_is_divisible :: proc(a: ^Int, allocator := context.allocator) -> (res:
|
||||
*/
|
||||
return false, nil;
|
||||
}
|
||||
|
||||
number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {
|
||||
switch {
|
||||
case bit_size <= 80:
|
||||
return - 1; /* Use deterministic algorithm for size <= 80 bits */
|
||||
case bit_size >= 81 && bit_size < 96:
|
||||
return 37; /* max. error = 2^(-96) */
|
||||
case bit_size >= 96 && bit_size < 128:
|
||||
return 32; /* max. error = 2^(-96) */
|
||||
case bit_size >= 128 && bit_size < 160:
|
||||
return 40; /* max. error = 2^(-112) */
|
||||
case bit_size >= 160 && bit_size < 256:
|
||||
return 35; /* max. error = 2^(-112) */
|
||||
case bit_size >= 256 && bit_size < 384:
|
||||
return 27; /* max. error = 2^(-128) */
|
||||
case bit_size >= 384 && bit_size < 512:
|
||||
return 16; /* max. error = 2^(-128) */
|
||||
case bit_size >= 512 && bit_size < 768:
|
||||
return 18; /* max. error = 2^(-160) */
|
||||
case bit_size >= 768 && bit_size < 896:
|
||||
return 11; /* max. error = 2^(-160) */
|
||||
case bit_size >= 896 && bit_size < 1_024:
|
||||
return 10; /* max. error = 2^(-160) */
|
||||
case bit_size >= 1_024 && bit_size < 1_536:
|
||||
return 12; /* max. error = 2^(-192) */
|
||||
case bit_size >= 1_536 && bit_size < 2_048:
|
||||
return 8; /* max. error = 2^(-192) */
|
||||
case bit_size >= 2_048 && bit_size < 3_072:
|
||||
return 6; /* max. error = 2^(-192) */
|
||||
case bit_size >= 3_072 && bit_size < 4_096:
|
||||
return 4; /* max. error = 2^(-192) */
|
||||
case bit_size >= 4_096 && bit_size < 5_120:
|
||||
return 5; /* max. error = 2^(-256) */
|
||||
case bit_size >= 5_120 && bit_size < 6_144:
|
||||
return 4; /* max. error = 2^(-256) */
|
||||
case bit_size >= 6_144 && bit_size < 8_192:
|
||||
return 4; /* max. error = 2^(-256) */
|
||||
case bit_size >= 8_192 && bit_size < 9_216:
|
||||
return 3; /* max. error = 2^(-256) */
|
||||
case bit_size >= 9_216 && bit_size < 10_240:
|
||||
return 3; /* max. error = 2^(-256) */
|
||||
case:
|
||||
return 2; /* For keysizes bigger than 10_240 use always at least 2 Rounds */
|
||||
}
|
||||
}
|
||||
@@ -430,7 +430,7 @@ _private_int_sqr_toom :: proc(dest, src: ^Int, allocator := context.allocator) -
|
||||
context.allocator = allocator;
|
||||
|
||||
S0, a0, a1, a2 := &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(S0, a0, a1, a2);
|
||||
defer internal_destroy(S0, a0, a1, a2);
|
||||
|
||||
/*
|
||||
Init temps.
|
||||
@@ -752,6 +752,188 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
|
||||
return nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from:
|
||||
|
||||
Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
|
||||
Vol. 18. Cambridge University Press, 2010
|
||||
Available online at https://arxiv.org/pdf/1004.4710
|
||||
|
||||
pages 19ff. in the above online document.
|
||||
*/
|
||||
_private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
A1, A2, B1, B0, Q1, Q0, R1, R0, t := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(A1, A2, B1, B0, Q1, Q0, R1, R0, t);
|
||||
|
||||
m := a.used - b.used;
|
||||
k := m / 2;
|
||||
|
||||
if m < MUL_KARATSUBA_CUTOFF { return _private_int_div_school(quotient, remainder, a, b); }
|
||||
|
||||
if err = internal_init_multi(A1, A2, B1, B0, Q1, Q0, R1, R0, t); err != nil { return err; }
|
||||
|
||||
/*
|
||||
`B1` = `b` / `beta`^`k`, `B0` = `b` % `beta`^`k`
|
||||
*/
|
||||
if err = internal_shrmod(B1, B0, b, k * _DIGIT_BITS); err != nil { return err; }
|
||||
|
||||
/*
|
||||
(Q1, R1) = RecursiveDivRem(A / beta^(2k), B1)
|
||||
*/
|
||||
if err = internal_shrmod(A1, t, a, 2 * k * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = _private_div_recursion(Q1, R1, A1, B1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k)
|
||||
*/
|
||||
if err = internal_shl_digit(R1, 2 * k); err != nil { return err; }
|
||||
if err = internal_add(A1, R1, t); err != nil { return err; }
|
||||
if err = internal_mul(t, Q1, B0); err != nil { return err; }
|
||||
|
||||
/*
|
||||
While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
|
||||
*/
|
||||
if internal_cmp(A1, 0) == -1 {
|
||||
if internal_shl(t, b, k * _DIGIT_BITS); err != nil { return err; }
|
||||
|
||||
for {
|
||||
if err = internal_decr(Q1); err != nil { return err; }
|
||||
if err = internal_add(A1, A1, t); err != nil { return err; }
|
||||
if internal_cmp(A1, 0) != -1 { break; }
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
(Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1)
|
||||
*/
|
||||
if internal_shrmod(A1, t, A1, k * _DIGIT_BITS); err != nil { return err; }
|
||||
if _private_div_recursion(Q0, R0, A1, B1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0)
|
||||
*/
|
||||
if err = internal_shl_digit(R0, k); err != nil { return err; }
|
||||
if err = internal_add(A2, R0, t); err != nil { return err; }
|
||||
if err = internal_mul(t, Q0, B0); err != nil { return err; }
|
||||
if err = internal_sub(A2, A2, t); err != nil { return err; }
|
||||
|
||||
/*
|
||||
While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
|
||||
*/
|
||||
for internal_cmp(A2, 0) == -1 {
|
||||
if err = internal_decr(Q0); err != nil { return err; }
|
||||
if err = internal_add(A2, A2, b); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
Return q = (Q1*beta^k) + Q0, r = A2.
|
||||
*/
|
||||
if err = internal_shl_digit(Q1, k); err != nil { return err; }
|
||||
if err = internal_add(quotient, Q1, Q0); err != nil { return err; }
|
||||
|
||||
return internal_copy(remainder, A2);
|
||||
}
|
||||
|
||||
_private_int_div_recursive :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
A, B, Q, Q1, R, A_div, A_mod := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(A, B, Q, Q1, R, A_div, A_mod);
|
||||
|
||||
if err = internal_init_multi(A, B, Q, Q1, R, A_div, A_mod); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Most significant bit of a limb.
|
||||
Assumes _DIGIT_MAX < (sizeof(DIGIT) * sizeof(u8)).
|
||||
*/
|
||||
msb := (_DIGIT_MAX + DIGIT(1)) >> 1;
|
||||
sigma := 0;
|
||||
msb_b := b.digit[b.used - 1];
|
||||
for msb_b < msb {
|
||||
sigma += 1;
|
||||
msb_b <<= 1;
|
||||
}
|
||||
|
||||
/*
|
||||
Use that sigma to normalize B.
|
||||
*/
|
||||
if err = internal_shl(B, b, sigma); err != nil { return err; }
|
||||
if err = internal_shl(A, a, sigma); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Fix the sign.
|
||||
*/
|
||||
neg := a.sign != b.sign;
|
||||
A.sign = .Zero_or_Positive; B.sign = .Zero_or_Positive;
|
||||
|
||||
/*
|
||||
If the magnitude of "A" is not more more than twice that of "B" we can work
|
||||
on them directly, otherwise we need to work at "A" in chunks.
|
||||
*/
|
||||
n := B.used;
|
||||
m := A.used - B.used;
|
||||
|
||||
/*
|
||||
Q = 0. We already ensured that when we called `internal_init_multi`.
|
||||
*/
|
||||
for m > n {
|
||||
/*
|
||||
(q, r) = RecursiveDivRem(A / (beta^(m-n)), B)
|
||||
*/
|
||||
j := (m - n) * _DIGIT_BITS;
|
||||
if err = internal_shrmod(A_div, A_mod, A, j); err != nil { return err; }
|
||||
if err = _private_div_recursion(Q1, R, A_div, B); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Q = (Q*beta!(n)) + q
|
||||
*/
|
||||
if err = internal_shl(Q, Q, n * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = internal_add(Q, Q, Q1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
A = (r * beta^(m-n)) + (A % beta^(m-n))
|
||||
*/
|
||||
if err = internal_shl(R, R, (m - n) * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = internal_add(A, R, A_mod); err != nil { return err; }
|
||||
|
||||
/*
|
||||
m = m - n
|
||||
*/
|
||||
m -= n;
|
||||
}
|
||||
|
||||
/*
|
||||
(q, r) = RecursiveDivRem(A, B)
|
||||
*/
|
||||
if err = _private_div_recursion(Q1, R, A, B); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Q = (Q * beta^m) + q, R = r
|
||||
*/
|
||||
if err = internal_shl(Q, Q, m * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = internal_add(Q, Q, Q1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Get sign before writing to dest.
|
||||
*/
|
||||
R.sign = .Zero_or_Positive if internal_is_zero(Q) else a.sign;
|
||||
|
||||
if quotient != nil {
|
||||
swap(quotient, Q);
|
||||
quotient.sign = .Negative if neg else .Zero_or_Positive;
|
||||
}
|
||||
if remainder != nil {
|
||||
/*
|
||||
De-normalize the remainder.
|
||||
*/
|
||||
if err = internal_shrmod(R, nil, R, sigma); err != nil { return err; }
|
||||
swap(remainder, R);
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Slower bit-bang division... also smaller.
|
||||
*/
|
||||
@@ -1040,7 +1222,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
|
||||
*/
|
||||
_private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
|
||||
bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
|
||||
defer internal_destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
|
||||
|
||||
ic := #force_inline internal_cmp(a, base);
|
||||
if ic == -1 || ic == 0 {
|
||||
@@ -1100,6 +1282,300 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
hac 14.61, pp608
|
||||
*/
|
||||
_private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
x, y, u, v, A, B, C, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(x, y, u, v, A, B, C, D);
|
||||
|
||||
/*
|
||||
`b` cannot be negative.
|
||||
*/
|
||||
if b.sign == .Negative || internal_is_zero(b) { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
init temps.
|
||||
*/
|
||||
if err = internal_init_multi(x, y, u, v, A, B, C, D); err != nil { return err; }
|
||||
|
||||
/*
|
||||
`x` = `a` % `b`, `y` = `b`
|
||||
*/
|
||||
if err = internal_mod(x, a, b); err != nil { return err; }
|
||||
if err = internal_copy(y, b); err != nil { return err; }
|
||||
|
||||
/*
|
||||
2. [modified] if x,y are both even then return an error!
|
||||
*/
|
||||
if internal_is_even(x) && internal_is_even(y) { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
3. u=x, v=y, A=1, B=0, C=0, D=1
|
||||
*/
|
||||
if err = internal_copy(u, x); err != nil { return err; }
|
||||
if err = internal_copy(v, y); err != nil { return err; }
|
||||
if err = internal_one(A); err != nil { return err; }
|
||||
if err = internal_one(D); err != nil { return err; }
|
||||
|
||||
for {
|
||||
/*
|
||||
4. while `u` is even do:
|
||||
*/
|
||||
for internal_is_even(u) {
|
||||
/*
|
||||
4.1 `u` = `u` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(u, u); err != nil { return err; }
|
||||
|
||||
/*
|
||||
4.2 if `A` or `B` is odd then:
|
||||
*/
|
||||
if internal_is_odd(A) || internal_is_odd(B) {
|
||||
/*
|
||||
`A` = (`A`+`y`) / 2, `B` = (`B`-`x`) / 2
|
||||
*/
|
||||
if err = internal_add(A, A, y); err != nil { return err; }
|
||||
if err = internal_add(B, B, x); err != nil { return err; }
|
||||
}
|
||||
/*
|
||||
`A` = `A` / 2, `B` = `B` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(A, A); err != nil { return err; }
|
||||
if err = internal_int_shr1(B, B); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
5. while `v` is even do:
|
||||
*/
|
||||
for internal_is_even(v) {
|
||||
/*
|
||||
5.1 `v` = `v` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(v, v); err != nil { return err; }
|
||||
|
||||
/*
|
||||
5.2 if `C` or `D` is odd then:
|
||||
*/
|
||||
if internal_is_odd(C) || internal_is_odd(D) {
|
||||
/*
|
||||
`C` = (`C`+`y`) / 2, `D` = (`D`-`x`) / 2
|
||||
*/
|
||||
if err = internal_add(C, C, y); err != nil { return err; }
|
||||
if err = internal_add(D, D, x); err != nil { return err; }
|
||||
}
|
||||
/*
|
||||
`C` = `C` / 2, `D` = `D` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(C, C); err != nil { return err; }
|
||||
if err = internal_int_shr1(D, D); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
6. if `u` >= `v` then:
|
||||
*/
|
||||
if internal_cmp(u, v) != -1 {
|
||||
/*
|
||||
`u` = `u` - `v`, `A` = `A` - `C`, `B` = `B` - `D`
|
||||
*/
|
||||
if err = internal_sub(u, u, v); err != nil { return err; }
|
||||
if err = internal_sub(A, A, C); err != nil { return err; }
|
||||
if err = internal_sub(B, B, D); err != nil { return err; }
|
||||
} else {
|
||||
/* v - v - u, C = C - A, D = D - B */
|
||||
if err = internal_sub(v, v, u); err != nil { return err; }
|
||||
if err = internal_sub(C, C, A); err != nil { return err; }
|
||||
if err = internal_sub(D, D, B); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
If not zero goto step 4
|
||||
*/
|
||||
if internal_is_zero(u) { break; }
|
||||
}
|
||||
|
||||
/*
|
||||
Now `a` = `C`, `b` = `D`, `gcd` == `g`*`v`
|
||||
*/
|
||||
|
||||
/*
|
||||
If `v` != `1` then there is no inverse.
|
||||
*/
|
||||
if internal_cmp(v, 1) != 0 { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
If its too low.
|
||||
*/
|
||||
if internal_cmp(C, 0) == -1 {
|
||||
if err = internal_add(C, C, b); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
Too big.
|
||||
*/
|
||||
if internal_cmp(C, 0) != -1 {
|
||||
if err = internal_sub(C, C, b); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
`C` is now the inverse.
|
||||
*/
|
||||
swap(dest, C);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
Computes the modular inverse via binary extended Euclidean algorithm, that is `dest` = 1 / `a` mod `b`.
|
||||
|
||||
Based on slow invmod except this is optimized for the case where `b` is odd,
|
||||
as per HAC Note 14.64 on pp. 610.
|
||||
*/
|
||||
_private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
x, y, u, v, B, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(x, y, u, v, B, D);
|
||||
|
||||
sign: Sign;
|
||||
|
||||
/*
|
||||
2. [modified] `b` must be odd.
|
||||
*/
|
||||
if internal_is_even(b) { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
Init all our temps.
|
||||
*/
|
||||
if err = internal_init_multi(x, y, u, v, B, D); err != nil { return err; }
|
||||
|
||||
/*
|
||||
`x` == modulus, `y` == value to invert.
|
||||
*/
|
||||
if err = internal_copy(x, b); err != nil { return err; }
|
||||
|
||||
/*
|
||||
We need `y` = `|a|`.
|
||||
*/
|
||||
if err = internal_mod(y, a, b); err != nil { return err; }
|
||||
|
||||
/*
|
||||
If one of `x`, `y` is zero return an error!
|
||||
*/
|
||||
if internal_is_zero(x) || internal_is_zero(y) { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
3. `u` = `x`, `v` = `y`, `A` = 1, `B` = 0, `C` = 0, `D` = 1
|
||||
*/
|
||||
if err = internal_copy(u, x); err != nil { return err; }
|
||||
if err = internal_copy(v, y); err != nil { return err; }
|
||||
|
||||
if err = internal_one(D); err != nil { return err; }
|
||||
|
||||
for {
|
||||
/*
|
||||
4. while `u` is even do.
|
||||
*/
|
||||
for internal_is_even(u) {
|
||||
/*
|
||||
4.1 `u` = `u` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(u, u); err != nil { return err; }
|
||||
|
||||
/*
|
||||
4.2 if `B` is odd then:
|
||||
*/
|
||||
if internal_is_odd(B) {
|
||||
/*
|
||||
`B` = (`B` - `x`) / 2
|
||||
*/
|
||||
if err = internal_sub(B, B, x); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
`B` = `B` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(B, B); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
5. while `v` is even do:
|
||||
*/
|
||||
for internal_is_even(v) {
|
||||
/*
|
||||
5.1 `v` = `v` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(v, v); err != nil { return err; }
|
||||
|
||||
/*
|
||||
5.2 if `D` is odd then:
|
||||
*/
|
||||
if internal_is_odd(D) {
|
||||
/*
|
||||
`D` = (`D` - `x`) / 2
|
||||
*/
|
||||
if err = internal_sub(D, D, x); err != nil { return err; }
|
||||
}
|
||||
/*
|
||||
`D` = `D` / 2
|
||||
*/
|
||||
if err = internal_int_shr1(D, D); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
6. if `u` >= `v` then:
|
||||
*/
|
||||
if internal_cmp(u, v) != -1 {
|
||||
/*
|
||||
`u` = `u` - `v`, `B` = `B` - `D`
|
||||
*/
|
||||
if err = internal_sub(u, u, v); err != nil { return err; }
|
||||
if err = internal_sub(B, B, D); err != nil { return err; }
|
||||
} else {
|
||||
/*
|
||||
`v` - `v` - `u`, `D` = `D` - `B`
|
||||
*/
|
||||
if err = internal_sub(v, v, u); err != nil { return err; }
|
||||
if err = internal_sub(D, D, B); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
If not zero goto step 4.
|
||||
*/
|
||||
if internal_is_zero(u) { break; }
|
||||
}
|
||||
|
||||
/*
|
||||
Now `a` = C, `b` = D, gcd == g*v
|
||||
*/
|
||||
|
||||
/*
|
||||
if `v` != 1 then there is no inverse
|
||||
*/
|
||||
if internal_cmp(v, 1) != 0 { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
`b` is now the inverse.
|
||||
*/
|
||||
sign = a.sign;
|
||||
for internal_int_is_negative(D) {
|
||||
if err = internal_add(D, D, b); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
Too big.
|
||||
*/
|
||||
for internal_cmp_mag(D, b) != -1 {
|
||||
if err = internal_sub(D, D, b); err != nil { return err; }
|
||||
}
|
||||
|
||||
swap(dest, D);
|
||||
dest.sign = sign;
|
||||
return nil;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Returns the log2 of an `Int`.
|
||||
Assumes `a` not to be `nil` and to have been initialized.
|
||||
|
||||
@@ -26,7 +26,9 @@ PyRes :: struct {
|
||||
|
||||
@export test_initialize_constants :: proc "c" () -> (res: u64) {
|
||||
context = runtime.default_context();
|
||||
return u64(initialize_constants());
|
||||
res = u64(initialize_constants());
|
||||
//assert(MUL_KARATSUBA_CUTOFF >= 40);
|
||||
return res;
|
||||
}
|
||||
|
||||
@export test_error_string :: proc "c" (err: Error) -> (res: cstring) {
|
||||
|
||||
@@ -66,6 +66,8 @@ timed_or_fast.add_argument(
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
EXIT_ON_FAIL = args.exit_on_fail
|
||||
|
||||
#
|
||||
# How many iterations of each random test do we want to run?
|
||||
#
|
||||
@@ -153,7 +155,7 @@ class Res(Structure):
|
||||
_fields_ = [("res", c_char_p), ("err", c_uint64)]
|
||||
|
||||
initialize_constants = load(l.test_initialize_constants, [], c_uint64)
|
||||
initialize_constants()
|
||||
print("initialize_constants: ", initialize_constants())
|
||||
|
||||
error_string = load(l.test_error_string, [c_byte], c_char_p)
|
||||
|
||||
@@ -211,7 +213,7 @@ def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expecte
|
||||
print(error, flush=True)
|
||||
passed = False
|
||||
|
||||
if args.exit_on_fail and not passed: exit(res.err)
|
||||
if EXIT_ON_FAIL and not passed: exit(res.err)
|
||||
|
||||
return passed
|
||||
|
||||
@@ -257,7 +259,7 @@ def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
|
||||
try:
|
||||
res = sqr(*args)
|
||||
except OSError as e:
|
||||
print("{} while trying to square {} x {}.".format(e, a))
|
||||
print("{} while trying to square {}.".format(e, a))
|
||||
if EXIT_ON_FAIL: exit(3)
|
||||
return False
|
||||
|
||||
@@ -268,7 +270,12 @@ def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
|
||||
|
||||
def test_div(a = 0, b = 0, expected_error = Error.Okay):
|
||||
args = [arg_to_odin(a), arg_to_odin(b)]
|
||||
res = div(*args)
|
||||
try:
|
||||
res = div(*args)
|
||||
except OSError as e:
|
||||
print("{} while trying divide to {} / {}.".format(e, a, b))
|
||||
if EXIT_ON_FAIL: exit(3)
|
||||
return False
|
||||
expected_result = None
|
||||
if expected_error == Error.Okay:
|
||||
#
|
||||
|
||||
@@ -23,6 +23,7 @@ Category :: enum {
|
||||
ctz,
|
||||
sqr,
|
||||
bitfield_extract,
|
||||
rm_trials,
|
||||
};
|
||||
|
||||
Event :: struct {
|
||||
|
||||
Reference in New Issue
Block a user