Add core:sys/valgrind package for valgrind, memcheck, and callgrind

This commit is contained in:
gingerBill
2022-08-17 16:09:03 +01:00
parent 6e9f9e6f3c
commit afec321db2
3 changed files with 414 additions and 0 deletions

View File

@@ -0,0 +1,63 @@
//+build amd64
package sys_valgrind
import "core:intrinsics"
Callgrind_Client_Request :: enum uintptr {
Dump_Stats = 'C'<<24 | 'T'<<16,
Zero_Stats,
Toggle_Collect,
Dump_Stats_At,
Start_Instrumentation,
Stop_Instrumentation,
}
@(require_results)
callgrind_client_request_expr :: proc "c" (default: uintptr, request: Callgrind_Client_Request, a0, a1, a2, a3, a4: uintptr) -> uintptr {
return intrinsics.valgrind_client_request(default, uintptr(request), a0, a1, a2, a3, a4)
}
callgrind_client_request_stmt :: proc "c" (request: Callgrind_Client_Request, a0, a1, a2, a3, a4: uintptr) {
_ = intrinsics.valgrind_client_request(0, uintptr(request), a0, a1, a2, a3, a4)
}
// Dump current state of cost centres, and zero them afterwards.
dump_stats :: proc "c" () {
callgrind_client_request_stmt(.Dump_Stats, 0, 0, 0, 0, 0)
}
// Zero cost centres
zero_stats :: proc "c" () {
callgrind_client_request_stmt(.Zero_Stats, 0, 0, 0, 0, 0)
}
// Toggles collection state.
// The collection state specifies whether the happening of events should be noted or
// if they are to be ignored. Events are noted by increment of counters in a cost centre.
toggle_collect :: proc "c" () {
callgrind_client_request_stmt(.Toggle_Collect, 0, 0, 0, 0, 0)
}
// Dump current state of cost centres, and zero them afterwards.
// The argument is appended to a string stating the reason which triggered
// the dump. This string is written as a description field into the
// profile data dump.
dump_stats_at :: proc "c" (pos_str: rawptr) {
callgrind_client_request_stmt(.Dump_Stats_At, uintptr(pos_str), 0, 0, 0, 0)
}
// Start full callgrind instrumentation if not already switched on.
// When cache simulation is done, it will flush the simulated cache;
// this will lead to an artificial cache warmup phase afterwards with
// cache misses which would not have happened in reality.
start_instrumentation :: proc "c" () {
callgrind_client_request_stmt(.Start_Instrumentation, 0, 0, 0, 0, 0)
}
// Stop full callgrind instrumentation if not already switched off.
// This flushes Valgrinds translation cache, and does no additional instrumentation
// afterwards, which effectivly will run at the same speed as the "none" tool (ie. at minimal slowdown).
// Use this to bypass Callgrind aggregation for uninteresting code parts.
// To start Callgrind in this mode to ignore the setup phase, use the option "--instr-atstart=no".
stop_instrumentation :: proc "c" () {
callgrind_client_request_stmt(.Stop_Instrumentation, 0, 0, 0, 0, 0)
}

View File

@@ -0,0 +1,169 @@
//+build amd64
package sys_valgrind
import "core:intrinsics"
Mem_Check_Client_Request :: enum uintptr {
Make_Mem_No_Access = 'M'<<24 | 'C'<<16,
Make_Mem_Undefined,
Make_Mem_Defined,
Discard,
Check_Mem_Is_Addressable,
Check_Mem_Is_Defined,
Do_Leak_Check,
Count_Leaks,
Get_Vbits,
Set_Vbits,
Create_Block,
Make_Mem_Defined_If_Addressable,
Count_Leak_Blocks,
Enable_Addr_Error_Reporting_In_Range,
Disable_Addr_Error_Reporting_In_Range,
}
@(require_results)
mem_check_client_request_expr :: proc "c" (default: uintptr, request: Mem_Check_Client_Request, a0, a1, a2, a3, a4: uintptr) -> uintptr {
return intrinsics.valgrind_client_request(default, uintptr(request), a0, a1, a2, a3, a4)
}
mem_check_client_request_stmt :: proc "c" (request: Mem_Check_Client_Request, a0, a1, a2, a3, a4: uintptr) {
_ = intrinsics.valgrind_client_request(0, uintptr(request), a0, a1, a2, a3, a4)
}
// Mark memory at `raw_data(qzz)` as unaddressable for `len(qzz)` bytes.
// Returns true when run on Valgrind and false otherwise.
make_mem_no_access :: proc "c" (qzz: []byte) -> bool {
return 0 != mem_check_client_request_expr(0, .Make_Mem_No_Access, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
// Mark memory at `raw_data(qzz)` as addressable but undefined for `len(qzz)` bytes.
// Returns true when run on Valgrind and false otherwise.
make_mem_undefined :: proc "c" (qzz: []byte) -> bool {
return 0 != mem_check_client_request_expr(0, .Make_Mem_Undefined, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
// Mark memory at `raw_data(qzz)` as addressable for `len(qzz)` bytes.
// Returns true when run on Valgrind and false otherwise.
make_mem_defined :: proc "c" (qzz: []byte) -> bool {
return 0 != mem_check_client_request_expr(0, .Make_Mem_Defined, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
// Check that memory at `raw_data(qzz)` is addressable for `len(qzz)` bytes.
// If suitable addressibility is not established, Valgrind prints an error
// message and returns the address of the first offending byte.
// Otherwise it returns zero.
check_mem_is_addressable :: proc "c" (qzz: []byte) -> uintptr {
return mem_check_client_request_expr(0, .Check_Mem_Is_Addressable, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
// Check that memory at `raw_data(qzz)` is addressable and defined for `len(qzz)` bytes.
// If suitable addressibility and definedness are not established,
// Valgrind prints an error message and returns the address of the first
// offending byte. Otherwise it returns zero.
check_mem_is_defined :: proc "c" (qzz: []byte) -> uintptr {
return mem_check_client_request_expr(0, .Check_Mem_Is_Defined, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
// Similar to `make_mem_defined(qzz)` except that addressability is not altered:
// bytes which are addressable are marked as defined, but those which
// are not addressable are left unchanged.
// Returns true when run on Valgrind and false otherwise.
make_mem_defined_if_addressable :: proc "c" (qzz: []byte) -> bool {
return 0 != mem_check_client_request_expr(0, .Make_Mem_Defined_If_Addressable, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
// Create a block-description handle.
// The description is an ascii string which is included in any messages
// pertaining to addresses within the specified memory range.
// Has no other effect on the properties of the memory range.
create_block :: proc "c" (qzz: []u8, desc: cstring) -> bool {
return 0 != mem_check_client_request_expr(0, .Create_Block, uintptr(raw_data(qzz)), uintptr(len(qzz)), uintptr(rawptr(desc)), 0, 0)
}
// Discard a block-description-handle. Returns true for an invalid handle, false for a valid handle.
discard :: proc "c" (blk_index: uintptr) -> bool {
return 0 != mem_check_client_request_expr(0, .Discard, 0, blk_index, 0, 0, 0)
}
// Do a full memory leak check (like `--leak-check=full`) mid-execution.
leak_check :: proc "c" () {
mem_check_client_request_stmt(.Do_Leak_Check, 0, 0, 0, 0, 0)
}
// Same as `leak_check()` but only showing the entries for which there was an increase
// in leaked bytes or leaked nr of blocks since the previous leak search.
added_leak_check :: proc "c" () {
mem_check_client_request_stmt(.Do_Leak_Check, 0, 1, 0, 0, 0)
}
// Same as `added_leak_check()` but showing entries with increased or decreased
// leaked bytes/blocks since previous leak search.
changed_leak_check :: proc "c" () {
mem_check_client_request_stmt(.Do_Leak_Check, 0, 2, 0, 0, 0)
}
// Do a summary memory leak check (like `--leak-check=summary`) mid-execution.
quick_leak_check :: proc "c" () {
mem_check_client_request_stmt(.Do_Leak_Check, 1, 0, 0, 0, 0)
}
Count_Result :: struct {
leaked: uint,
dubious: uint,
reachable: uint,
suppressed: uint,
}
count_leaks :: proc "c" () -> (res: Count_Result) {
mem_check_client_request_stmt(
.Count_Leaks,
uintptr(&res.leaked),
uintptr(&res.dubious),
uintptr(&res.reachable),
uintptr(&res.suppressed),
0,
)
return
}
count_leak_blocks :: proc "c" () -> (res: Count_Result) {
mem_check_client_request_stmt(
.Count_Leak_Blocks,
uintptr(&res.leaked),
uintptr(&res.dubious),
uintptr(&res.reachable),
uintptr(&res.suppressed),
0,
)
return
}
// Get the validity data for addresses zza and copy it
// into the provided zzvbits array. Return values:
// 0 - if not running on valgrind
// 1 - success
// 2 - [previously indicated unaligned arrays; these are now allowed]
// 3 - if any parts of zzsrc/zzvbits are not addressable.
// The metadata is not copied in cases 0, 2 or 3 so it should be
// impossible to segfault your system by using this call.
get_vbits :: proc(zza, zzvbits: []byte) -> u8 {
// assert requires a `context` thus these procedures cannot `proc "c"`
assert(len(zzvbits) >= len(zza)/8)
return u8(mem_check_client_request_expr(0, .Get_Vbits, uintptr(raw_data(zza)), uintptr(raw_data(zzvbits)), uintptr(len(zza)), 0, 0))
}
// Set the validity data for addresses zza, copying it
// from the provided zzvbits array. Return values:
// 0 - if not running on valgrind
// 1 - success
// 2 - [previously indicated unaligned arrays; these are now allowed]
// 3 - if any parts of zza/zzvbits are not addressable.
// The metadata is not copied in cases 0, 2 or 3 so it should be
// impossible to segfault your system by using this call.
set_vbits :: proc(zzvbits, zza: []byte) -> u8 {
// assert requires a `context` thus these procedures cannot `proc "c"`
assert(len(zzvbits) >= len(zza)/8)
return u8(mem_check_client_request_expr(0, .Set_Vbits, uintptr(raw_data(zza)), uintptr(raw_data(zzvbits)), uintptr(len(zza)), 0, 0))
}
// (Re-)enable reporting of addressing errors in the specified address range.
enable_addr_error_reporting_in_range :: proc "c" (qzz: []byte) -> uintptr {
return mem_check_client_request_expr(0, .Enable_Addr_Error_Reporting_In_Range, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
// Disable reporting of addressing errors in the specified address range.
disable_addr_error_reporting_in_range :: proc "c" (qzz: []byte) -> uintptr {
return mem_check_client_request_expr(0, .Disable_Addr_Error_Reporting_In_Range, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}

View File

@@ -0,0 +1,182 @@
//+build amd64
package sys_valgrind
import "core:intrinsics"
Client_Request :: enum uintptr {
Running_On_Valgrind = 4097,
Discard_Translations = 4098,
Client_Call0 = 4353,
Client_Call1 = 4354,
Client_Call2 = 4355,
Client_Call3 = 4356,
Count_Errors = 4609,
Gdb_Monitor_Command = 4610,
Malloc_Like_Block = 4865,
Resize_Inplace_Block = 4875,
Free_Like_Block = 4866,
Create_Mem_Pool = 4867,
Destroy_Mem_Pool = 4868,
Mem_Pool_Alloc = 4869,
Mem_Pool_Free = 4870,
Mem_Pool_Trim = 4871,
Move_Mem_Pool = 4872,
Mem_Pool_Change = 4873,
Mem_Pool_Exists = 4874,
Printf = 5121,
Printf_Backtrace = 5122,
Printf_Valist_By_Ref = 5123,
Printf_Backtrace_Valist_By_Ref = 5124,
Stack_Register = 5377,
Stack_Deregister = 5378,
Stack_Change = 5379,
Load_Pdb_Debug_Info = 5633,
Map_Ip_To_Src_Loc = 5889,
Change_Err_Disablement = 6145,
Vex_Init_For_Iri = 6401,
Inner_Threads = 6402,
}
@(require_results)
client_request_expr :: proc "c" (default: uintptr, request: Client_Request, a0, a1, a2, a3, a4: uintptr) -> uintptr {
return intrinsics.valgrind_client_request(default, uintptr(request), a0, a1, a2, a3, a4)
}
client_request_stmt :: proc "c" (request: Client_Request, a0, a1, a2, a3, a4: uintptr) {
_ = intrinsics.valgrind_client_request(0, uintptr(request), a0, a1, a2, a3, a4)
}
// Returns the number of Valgrinds this code is running under
// 0 - running natively
// 1 - running under Valgrind
// 2 - running under Valgrind which is running under another Valgrind
running_on_valgrind :: proc "c" () -> uintptr {
return client_request_expr(0, .Running_On_Valgrind, 0, 0, 0, 0, 0)
}
// Discard translation of code in the slice qzz. Useful if you are debugging a JIT-er or some such,
// since it provides a way to make sure valgrind will retranslate the invalidated area.
discard_translations :: proc "c" (qzz: []byte) {
client_request_stmt(.Discard_Translations, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
non_simd_call0 :: proc "c" (p: proc "c" (uintptr) -> uintptr) -> uintptr {
return client_request_expr(0, .Client_Call0, uintptr(rawptr(p)), 0, 0, 0, 0)
}
non_simd_call1 :: proc "c" (p: proc "c" (uintptr, uintptr) -> uintptr, a0: uintptr) -> uintptr {
return client_request_expr(0, .Client_Call1, uintptr(rawptr(p)), a0, 0, 0, 0)
}
non_simd_call2 :: proc "c" (p: proc "c" (uintptr, uintptr, uintptr) -> uintptr, a0, a1: uintptr) -> uintptr {
return client_request_expr(0, .Client_Call2, uintptr(rawptr(p)), a0, a1, 0, 0)
}
non_simd_call3 :: proc "c" (p: proc "c" (uintptr, uintptr, uintptr, uintptr) -> uintptr, a0, a1, a2: uintptr) -> uintptr {
return client_request_expr(0, .Client_Call3, uintptr(rawptr(p)), a0, a1, a2, 0)
}
// Counts the number of errors that have been recorded by a tool.
count_errrors :: proc "c" () -> uint {
return uint(client_request_expr(0, .Count_Errors, 0, 0, 0, 0, 0))
}
monitor_command :: proc "c" (command: cstring) -> bool {
return 0 != client_request_expr(0, .Gdb_Monitor_Command, uintptr(rawptr(command)), 0, 0, 0, 0)
}
malloc_like_block :: proc "c" (mem: []byte, rz_b: uintptr, is_zeroed: bool) {
client_request_stmt(.Malloc_Like_Block, uintptr(raw_data(mem)), uintptr(len(mem)), rz_b, uintptr(is_zeroed), 0)
}
resize_inplace_block :: proc "c" (old_mem: []byte, new_size: uint, rz_b: uintptr) {
client_request_stmt(.Resize_Inplace_Block, uintptr(raw_data(old_mem)), uintptr(len(old_mem)), uintptr(new_size), rz_b, 0)
}
free_like_block :: proc "c" (addr: rawptr, rz_b: uintptr) {
client_request_stmt(.Free_Like_Block, uintptr(addr), rz_b, 0, 0, 0)
}
Mem_Pool_Flags :: distinct bit_set[Mem_Pool_Flag; uintptr]
Mem_Pool_Flag :: enum uintptr {
Auto_Free = 0,
Meta_Pool = 1,
}
// Create a memory pool.
create_mem_pool :: proc "c" (pool: rawptr, rz_b: uintptr, is_zeroed: bool, flags: Mem_Pool_Flags) {
client_request_stmt(.Create_Mem_Pool, uintptr(pool), rz_b, uintptr(is_zeroed), transmute(uintptr)flags, 0)
}
// Destroy a memory pool.
destroy_mem_pool :: proc "c" (pool: rawptr) {
client_request_stmt(.Destroy_Mem_Pool, uintptr(pool), 0, 0, 0, 0)
}
// Associate a section of memory with a memory pool.
mem_pool_alloc :: proc "c" (pool: rawptr, mem: []byte) {
client_request_stmt(.Mem_Pool_Alloc, uintptr(pool), uintptr(raw_data(mem)), uintptr(len(mem)), 0, 0)
}
// Disassociate a section of memory from a memory pool.
mem_pool_free :: proc "c" (pool: rawptr, addr: rawptr) {
client_request_stmt(.Mem_Pool_Free, uintptr(pool), uintptr(addr), 0, 0, 0)
}
// Disassociate parts of a section of memory outside a particular range.
mem_pool_trim :: proc "c" (pool: rawptr, mem: []byte) {
client_request_stmt(.Mem_Pool_Trim, uintptr(pool), uintptr(raw_data(mem)), uintptr(len(mem)), 0, 0)
}
// Resize and/or move a section of memory associated with a memory pool.
move_mem_pool :: proc "c" (pool_a, pool_b: rawptr) {
client_request_stmt(.Move_Mem_Pool, uintptr(pool_a), uintptr(pool_b), 0, 0, 0)
}
// Resize and/or move a section of memory associated with a memory pool.
mem_pool_change :: proc "c" (pool: rawptr, addr_a: rawptr, mem: []byte) {
client_request_stmt(.Mem_Pool_Change, uintptr(pool), uintptr(addr_a), uintptr(raw_data(mem)), uintptr(len(mem)), 0)
}
// Return true if a memory pool exists
mem_pool_exists :: proc "c" (pool: rawptr) -> bool {
return 0 != client_request_expr(0, .Mem_Pool_Exists, uintptr(pool), 0, 0, 0, 0)
}
// Mark a section of memory as being a stack. Returns a stack id.
stack_register :: proc "c" (stack: []byte) -> (stack_id: uintptr) {
ptr := uintptr(raw_data(stack))
return client_request_expr(0, .Stack_Register, ptr, ptr+uintptr(len(stack)), 0, 0, 0)
}
// Unmark a section of memory associated with a stack id as being a stack.
stack_deregister :: proc "c" (id: uintptr) {
client_request_stmt(.Stack_Deregister, id, 0, 0, 0, 0)
}
// Change the start and end address of the stack id with the `new_stack` slice.
stack_change :: proc "c" (id: uint, new_stack: []byte) {
ptr := uintptr(raw_data(new_stack))
client_request_stmt(.Stack_Change, uintptr(id), ptr, ptr + uintptr(len(new_stack)), 0, 0)
}
// Disable error reporting for the current thread/
// It behaves in a stack-like way, meaning you can safely call this multiple times
// given that `enable_error_reporting()` is called the same number of times to
// re-enable the error reporting.
// The first call of this macro disables reporting.
// Subsequent calls have no effect except to increase the number of `enable_error_reporting()`
// calls needed to re-enable reporting.
// Child threads do not inherit this setting from their parents;
// they are always created with reporting enabled.
disable_error_reporting :: proc "c" () {
client_request_stmt(.Change_Err_Disablement, 1, 0, 0, 0, 0)
}
// Re-enable error reporting
enable_error_reporting :: proc "c" () {
client_request_stmt(.Change_Err_Disablement, ~uintptr(0), 0, 0, 0, 0)
}
inner_threads :: proc "c" (qzz: rawptr) {
client_request_stmt(.Inner_Threads, uintptr(qzz), 0, 0, 0, 0)
}
// Map a code address to a source file name and line number.
// `buf64` must point to a 64-byte buffer in the caller's address space.
// The result will be dumped in there and is guaranteed to be zero terminated.
// If no info is found, the first byte is set to zero.
map_ip_to_src_loc :: proc "c" (addr: rawptr, buf64: ^[64]byte) -> uintptr {
return client_request_expr(0, .Map_Ip_To_Src_Loc, uintptr(addr), uintptr(buf64), 0, 0, 0)
}