core/crypto/aes: Add AES implementation

This commit is contained in:
Yawning Angel
2024-05-25 20:24:39 +09:00
parent 1ade62b630
commit c751e4b2eb
11 changed files with 1142 additions and 1 deletions

View File

@@ -10,7 +10,6 @@ KEY_SIZE_256 :: 32
// BLOCK_SIZE is the AES block size in bytes.
BLOCK_SIZE :: 16
// ROUNDS_128 is the number of rounds for AES-128.
ROUNDS_128 :: 10
// ROUNDS_192 is the number of rounds for AES-192.
@@ -22,6 +21,8 @@ ROUNDS_256 :: 14
GHASH_KEY_SIZE :: 16
// GHASH_BLOCK_SIZE is the GHASH block size in bytes.
GHASH_BLOCK_SIZE :: 16
// GHASH_TAG_SIZE is the GHASH tag size in bytes.
GHASH_TAG_SIZE :: 16
// RCON is the AES keyschedule round constants.
RCON := [10]byte{0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36}

22
core/crypto/aes/aes.odin Normal file
View File

@@ -0,0 +1,22 @@
/*
package aes implements the AES block cipher and some common modes.
See:
- https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
- https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
- https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
*/
package aes
import "core:crypto/_aes"
// KEY_SIZE_128 is the AES-128 key size in bytes.
KEY_SIZE_128 :: _aes.KEY_SIZE_128
// KEY_SIZE_192 is the AES-192 key size in bytes.
KEY_SIZE_192 :: _aes.KEY_SIZE_192
// KEY_SIZE_256 is the AES-256 key size in bytes.
KEY_SIZE_256 :: _aes.KEY_SIZE_256
// BLOCK_SIZE is the AES block size in bytes.
BLOCK_SIZE :: _aes.BLOCK_SIZE

View File

@@ -0,0 +1,199 @@
package aes
import "core:crypto/_aes/ct64"
import "core:encoding/endian"
import "core:math/bits"
import "core:mem"
// CTR_IV_SIZE is the size of the CTR mode IV in bytes.
CTR_IV_SIZE :: 16
// Context_CTR is a keyed AES-CTR instance.
Context_CTR :: struct {
_impl: Context_Impl,
_buffer: [BLOCK_SIZE]byte,
_off: int,
_ctr_hi: u64,
_ctr_lo: u64,
_is_initialized: bool,
}
// init_ctr initializes a Context_CTR with the provided key and IV.
init_ctr :: proc(ctx: ^Context_CTR, key, iv: []byte, impl := Implementation.Hardware) {
if len(iv) != CTR_IV_SIZE {
panic("crypto/aes: invalid CTR IV size")
}
init_impl(&ctx._impl, key, impl)
ctx._off = BLOCK_SIZE
ctx._ctr_hi = endian.unchecked_get_u64be(iv[0:])
ctx._ctr_lo = endian.unchecked_get_u64be(iv[8:])
ctx._is_initialized = true
}
// xor_bytes_ctr XORs each byte in src with bytes taken from the AES-CTR
// keystream, and writes the resulting output to dst. dst and src MUST
// alias exactly or not at all.
xor_bytes_ctr :: proc(ctx: ^Context_CTR, dst, src: []byte) {
assert(ctx._is_initialized)
// TODO: Enforcing that dst and src alias exactly or not at all
// is a good idea, though odd aliasing should be extremely uncommon.
src, dst := src, dst
if dst_len := len(dst); dst_len < len(src) {
src = src[:dst_len]
}
for remaining := len(src); remaining > 0; {
// Process multiple blocks at once
if ctx._off == BLOCK_SIZE {
if nr_blocks := remaining / BLOCK_SIZE; nr_blocks > 0 {
direct_bytes := nr_blocks * BLOCK_SIZE
ctr_blocks(ctx, dst, src, nr_blocks)
remaining -= direct_bytes
if remaining == 0 {
return
}
dst = dst[direct_bytes:]
src = src[direct_bytes:]
}
// If there is a partial block, generate and buffer 1 block
// worth of keystream.
ctr_blocks(ctx, ctx._buffer[:], nil, 1)
ctx._off = 0
}
// Process partial blocks from the buffered keystream.
to_xor := min(BLOCK_SIZE - ctx._off, remaining)
buffered_keystream := ctx._buffer[ctx._off:]
for i := 0; i < to_xor; i = i + 1 {
dst[i] = buffered_keystream[i] ~ src[i]
}
ctx._off += to_xor
dst = dst[to_xor:]
src = src[to_xor:]
remaining -= to_xor
}
}
// keystream_bytes_ctr fills dst with the raw AES-CTR keystream output.
keystream_bytes_ctr :: proc(ctx: ^Context_CTR, dst: []byte) {
assert(ctx._is_initialized)
dst := dst
for remaining := len(dst); remaining > 0; {
// Process multiple blocks at once
if ctx._off == BLOCK_SIZE {
if nr_blocks := remaining / BLOCK_SIZE; nr_blocks > 0 {
direct_bytes := nr_blocks * BLOCK_SIZE
ctr_blocks(ctx, dst, nil, nr_blocks)
remaining -= direct_bytes
if remaining == 0 {
return
}
dst = dst[direct_bytes:]
}
// If there is a partial block, generate and buffer 1 block
// worth of keystream.
ctr_blocks(ctx, ctx._buffer[:], nil, 1)
ctx._off = 0
}
// Process partial blocks from the buffered keystream.
to_copy := min(BLOCK_SIZE - ctx._off, remaining)
buffered_keystream := ctx._buffer[ctx._off:]
copy(dst[:to_copy], buffered_keystream[:to_copy])
ctx._off += to_copy
dst = dst[to_copy:]
remaining -= to_copy
}
}
// reset_ctr sanitizes the Context_CTR. The Context_CTR must be
// re-initialized to be used again.
reset_ctr :: proc "contextless" (ctx: ^Context_CTR) {
reset_impl(&ctx._impl)
ctx._off = 0
ctx._ctr_hi = 0
ctx._ctr_lo = 0
mem.zero_explicit(&ctx._buffer, size_of(ctx._buffer))
ctx._is_initialized = false
}
@(private)
ctr_blocks :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) {
// Use the optimized hardware implementation if available.
if _, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
ctr_blocks_hw(ctx, dst, src, nr_blocks)
return
}
// Portable implementation.
ct64_inc_ctr := #force_inline proc "contextless" (dst: []byte, hi, lo: u64) -> (u64, u64) {
endian.unchecked_put_u64be(dst[0:], hi)
endian.unchecked_put_u64be(dst[8:], lo)
hi, lo := hi, lo
carry: u64
lo, carry = bits.add_u64(lo, 1, 0)
hi, _ = bits.add_u64(hi, 0, carry)
return hi, lo
}
impl := &ctx._impl.(ct64.Context)
src, dst := src, dst
nr_blocks := nr_blocks
ctr_hi, ctr_lo := ctx._ctr_hi, ctx._ctr_lo
tmp: [ct64.STRIDE][BLOCK_SIZE]byte = ---
ctrs: [ct64.STRIDE][]byte = ---
for i in 0 ..< ct64.STRIDE {
ctrs[i] = tmp[i][:]
}
for nr_blocks > 0 {
n := min(ct64.STRIDE, nr_blocks)
blocks := ctrs[:n]
for i in 0 ..< n {
ctr_hi, ctr_lo = ct64_inc_ctr(blocks[i], ctr_hi, ctr_lo)
}
ct64.encrypt_blocks(impl, blocks, blocks)
xor_blocks(dst, src, blocks)
if src != nil {
src = src[n * BLOCK_SIZE:]
}
dst = dst[n * BLOCK_SIZE:]
nr_blocks -= n
}
// Write back the counter.
ctx._ctr_hi, ctx._ctr_lo = ctr_hi, ctr_lo
mem.zero_explicit(&tmp, size_of(tmp))
}
@(private)
xor_blocks :: #force_inline proc "contextless" (dst, src: []byte, blocks: [][]byte) {
// Note: This would be faster `core:simd` was used, however if
// performance of this implementation matters to where that
// optimization would be worth it, use chacha20poly1305, or a
// CPU that isn't e-waste.
if src != nil {
#no_bounds_check {
for i in 0 ..< len(blocks) {
off := i * BLOCK_SIZE
for j in 0 ..< BLOCK_SIZE {
blocks[i][j] ~= src[off + j]
}
}
}
}
for i in 0 ..< len(blocks) {
copy(dst[i * BLOCK_SIZE:], blocks[i])
}
}

View File

@@ -0,0 +1,57 @@
package aes
import "core:crypto/_aes/ct64"
// Context_ECB is a keyed AES-ECB instance.
//
// WARNING: Using ECB mode is strongly discouraged unless it is being
// used to implement higher level constructs.
Context_ECB :: struct {
_impl: Context_Impl,
_is_initialized: bool,
}
// init_ecb initializes a Context_ECB with the provided key.
init_ecb :: proc(ctx: ^Context_ECB, key: []byte, impl := Implementation.Hardware) {
init_impl(&ctx._impl, key, impl)
ctx._is_initialized = true
}
// encrypt_ecb encrypts the BLOCK_SIZE buffer src, and writes the result to dst.
encrypt_ecb :: proc(ctx: ^Context_ECB, dst, src: []byte) {
assert(ctx._is_initialized)
if len(dst) != BLOCK_SIZE || len(src) != BLOCK_SIZE {
panic("crypto/aes: invalid buffer size(s)")
}
switch &impl in ctx._impl {
case ct64.Context:
ct64.encrypt_block(&impl, dst, src)
case Context_Impl_Hardware:
encrypt_block_hw(&impl, dst, src)
}
}
// decrypt_ecb decrypts the BLOCK_SIZE buffer src, and writes the result to dst.
decrypt_ecb :: proc(ctx: ^Context_ECB, dst, src: []byte) {
assert(ctx._is_initialized)
if len(dst) != BLOCK_SIZE || len(src) != BLOCK_SIZE {
panic("crypto/aes: invalid buffer size(s)")
}
switch &impl in ctx._impl {
case ct64.Context:
ct64.decrypt_block(&impl, dst, src)
case Context_Impl_Hardware:
decrypt_block_hw(&impl, dst, src)
}
}
// reset_ecb sanitizes the Context_ECB. The Context_ECB must be
// re-initialized to be used again.
reset_ecb :: proc "contextless" (ctx: ^Context_ECB) {
reset_impl(&ctx._impl)
ctx._is_initialized = false
}

View File

@@ -0,0 +1,253 @@
package aes
import "core:crypto"
import "core:crypto/_aes"
import "core:crypto/_aes/ct64"
import "core:encoding/endian"
import "core:mem"
// GCM_NONCE_SIZE is the size of the GCM nonce in bytes.
GCM_NONCE_SIZE :: 12
// GCM_TAG_SIZE is the size of a GCM tag in bytes.
GCM_TAG_SIZE :: _aes.GHASH_TAG_SIZE
@(private)
GCM_A_MAX :: max(u64) / 8 // 2^64 - 1 bits -> bytes
@(private)
GCM_P_MAX :: 0xfffffffe0 // 2^39 - 256 bits -> bytes
// Context_GCM is a keyed AES-GCM instance.
Context_GCM :: struct {
_impl: Context_Impl,
_is_initialized: bool,
}
// init_gcm initializes a Context_GCM with the provided key.
init_gcm :: proc(ctx: ^Context_GCM, key: []byte, impl := Implementation.Hardware) {
init_impl(&ctx._impl, key, impl)
ctx._is_initialized = true
}
// seal_gcm encrypts the plaintext and authenticates the aad and ciphertext,
// with the provided Context_GCM and nonce, stores the output in dst and tag.
//
// dst and plaintext MUST alias exactly or not at all.
seal_gcm :: proc(ctx: ^Context_GCM, dst, tag, nonce, aad, plaintext: []byte) {
assert(ctx._is_initialized)
gcm_validate_common_slice_sizes(tag, nonce, aad, plaintext)
if len(dst) != len(plaintext) {
panic("crypto/aes: invalid destination ciphertext size")
}
if impl, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
gcm_seal_hw(&impl, dst, tag, nonce, aad, plaintext)
return
}
h: [_aes.GHASH_KEY_SIZE]byte
j0: [_aes.GHASH_BLOCK_SIZE]byte
s: [_aes.GHASH_TAG_SIZE]byte
init_ghash_ct64(ctx, &h, &j0, nonce)
// Note: Our GHASH implementation handles appending padding.
ct64.ghash(s[:], h[:], aad)
gctr_ct64(ctx, dst, &s, plaintext, &h, nonce, true)
final_ghash_ct64(&s, &h, &j0, len(aad), len(plaintext))
copy(tag, s[:])
mem.zero_explicit(&h, len(h))
mem.zero_explicit(&j0, len(j0))
}
// open_gcm authenticates the aad and ciphertext, and decrypts the ciphertext,
// with the provided Context_GCM, nonce, and tag, and stores the output in dst,
// returning true iff the authentication was successful. If authentication
// fails, the destination buffer will be zeroed.
//
// dst and plaintext MUST alias exactly or not at all.
open_gcm :: proc(ctx: ^Context_GCM, dst, nonce, aad, ciphertext, tag: []byte) -> bool {
assert(ctx._is_initialized)
gcm_validate_common_slice_sizes(tag, nonce, aad, ciphertext)
if len(dst) != len(ciphertext) {
panic("crypto/aes: invalid destination plaintext size")
}
if impl, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
return gcm_open_hw(&impl, dst, nonce, aad, ciphertext, tag)
}
h: [_aes.GHASH_KEY_SIZE]byte
j0: [_aes.GHASH_BLOCK_SIZE]byte
s: [_aes.GHASH_TAG_SIZE]byte
init_ghash_ct64(ctx, &h, &j0, nonce)
ct64.ghash(s[:], h[:], aad)
gctr_ct64(ctx, dst, &s, ciphertext, &h, nonce, false)
final_ghash_ct64(&s, &h, &j0, len(aad), len(ciphertext))
ok := crypto.compare_constant_time(s[:], tag) == 1
if !ok {
mem.zero_explicit(raw_data(dst), len(dst))
}
mem.zero_explicit(&h, len(h))
mem.zero_explicit(&j0, len(j0))
mem.zero_explicit(&s, len(s))
return ok
}
// reset_ctr sanitizes the Context_GCM. The Context_GCM must be
// re-initialized to be used again.
reset_gcm :: proc "contextless" (ctx: ^Context_GCM) {
reset_impl(&ctx._impl)
ctx._is_initialized = false
}
@(private)
gcm_validate_common_slice_sizes :: proc(tag, nonce, aad, text: []byte) {
if len(tag) != GCM_TAG_SIZE {
panic("crypto/aes: invalid GCM tag size")
}
// The specification supports nonces in the range [1, 2^64) bits
// however per NIST SP 800-38D 5.2.1.1:
//
// > For IVs, it is recommended that implementations restrict support
// > to the length of 96 bits, to promote interoperability, efficiency,
// > and simplicity of design.
if len(nonce) != GCM_NONCE_SIZE {
panic("crypto/aes: invalid GCM nonce size")
}
if aad_len := u64(len(aad)); aad_len > GCM_A_MAX {
panic("crypto/aes: oversized GCM aad")
}
if text_len := u64(len(text)); text_len > GCM_P_MAX {
panic("crypto/aes: oversized GCM src data")
}
}
@(private = "file")
init_ghash_ct64 :: proc(
ctx: ^Context_GCM,
h: ^[_aes.GHASH_KEY_SIZE]byte,
j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
nonce: []byte,
) {
impl := &ctx._impl.(ct64.Context)
// 1. Let H = CIPH(k, 0^128)
ct64.encrypt_block(impl, h[:], h[:])
// ECB encrypt j0, so that we can just XOR with the tag. In theory
// this could be processed along with the final GCTR block, to
// potentially save a call to AES-ECB, but... just use AES-NI.
copy(j0[:], nonce)
j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
ct64.encrypt_block(impl, j0[:], j0[:])
}
@(private = "file")
final_ghash_ct64 :: proc(
s: ^[_aes.GHASH_BLOCK_SIZE]byte,
h: ^[_aes.GHASH_KEY_SIZE]byte,
j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
a_len: int,
t_len: int,
) {
blk: [_aes.GHASH_BLOCK_SIZE]byte
endian.unchecked_put_u64be(blk[0:], u64(a_len) * 8)
endian.unchecked_put_u64be(blk[8:], u64(t_len) * 8)
ct64.ghash(s[:], h[:], blk[:])
for i in 0 ..< len(s) {
s[i] ~= j0[i]
}
}
@(private = "file")
gctr_ct64 :: proc(
ctx: ^Context_GCM,
dst: []byte,
s: ^[_aes.GHASH_BLOCK_SIZE]byte,
src: []byte,
h: ^[_aes.GHASH_KEY_SIZE]byte,
nonce: []byte,
is_seal: bool,
) {
ct64_inc_ctr32 := #force_inline proc "contextless" (dst: []byte, ctr: u32) -> u32 {
endian.unchecked_put_u32be(dst[12:], ctr)
return ctr + 1
}
// 2. Define a block J_0 as follows:
// if len(IV) = 96, then let J0 = IV || 0^31 || 1
//
// Note: We only support 96 bit IVs.
tmp, tmp2: [ct64.STRIDE][BLOCK_SIZE]byte = ---, ---
ctrs, blks: [ct64.STRIDE][]byte = ---, ---
ctr: u32 = 2
for i in 0 ..< ct64.STRIDE {
// Setup scratch space for the keystream.
blks[i] = tmp2[i][:]
// Pre-copy the IV to all the counter blocks.
ctrs[i] = tmp[i][:]
copy(ctrs[i], nonce)
}
// We stitch the GCTR and GHASH operations together, so that only
// one pass over the ciphertext is required.
impl := &ctx._impl.(ct64.Context)
src, dst := src, dst
nr_blocks := len(src) / BLOCK_SIZE
for nr_blocks > 0 {
n := min(ct64.STRIDE, nr_blocks)
l := n * BLOCK_SIZE
if !is_seal {
ct64.ghash(s[:], h[:], src[:l])
}
// The keystream is written to a separate buffer, as we will
// reuse the first 96-bits of each counter.
for i in 0 ..< n {
ctr = ct64_inc_ctr32(ctrs[i], ctr)
}
ct64.encrypt_blocks(impl, blks[:n], ctrs[:n])
xor_blocks(dst, src, blks[:n])
if is_seal {
ct64.ghash(s[:], h[:], dst[:l])
}
src = src[l:]
dst = dst[l:]
nr_blocks -= n
}
if l := len(src); l > 0 {
if !is_seal {
ct64.ghash(s[:], h[:], src[:l])
}
ct64_inc_ctr32(ctrs[0], ctr)
ct64.encrypt_block(impl, ctrs[0], ctrs[0])
for i in 0 ..< l {
dst[i] = src[i] ~ ctrs[0][i]
}
if is_seal {
ct64.ghash(s[:], h[:], dst[:l])
}
}
mem.zero_explicit(&tmp, size_of(tmp))
mem.zero_explicit(&tmp2, size_of(tmp2))
}

View File

@@ -0,0 +1,41 @@
package aes
import "core:crypto/_aes/ct64"
import "core:mem"
import "core:reflect"
@(private)
Context_Impl :: union {
ct64.Context,
Context_Impl_Hardware,
}
// Implementation is an AES implementation. Most callers will not need
// to use this as the package will automatically select the most performant
// implementation available (See `is_hardware_accelerated()`).
Implementation :: enum {
Portable,
Hardware,
}
@(private)
init_impl :: proc(ctx: ^Context_Impl, key: []byte, impl: Implementation) {
impl := impl
if !is_hardware_accelerated() {
impl = .Portable
}
switch impl {
case .Portable:
reflect.set_union_variant_typeid(ctx^, typeid_of(ct64.Context))
ct64.init(&ctx.(ct64.Context), key)
case .Hardware:
reflect.set_union_variant_typeid(ctx^, typeid_of(Context_Impl_Hardware))
init_impl_hw(&ctx.(Context_Impl_Hardware), key)
}
}
@(private)
reset_impl :: proc "contextless" (ctx: ^Context_Impl) {
mem.zero_explicit(ctx, size_of(Context_Impl))
}

View File

@@ -0,0 +1,43 @@
package aes
@(private = "file")
ERR_HW_NOT_SUPPORTED :: "crypto/aes: hardware implementation unsupported"
// is_hardware_accelerated returns true iff hardware accelerated AES
// is supported.
is_hardware_accelerated :: proc "contextless" () -> bool {
return false
}
@(private)
Context_Impl_Hardware :: struct {}
@(private)
init_impl_hw :: proc(ctx: ^Context_Impl_Hardware, key: []byte) {
panic(ERR_HW_NOT_SUPPORTED)
}
@(private)
encrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
panic(ERR_HW_NOT_SUPPORTED)
}
@(private)
decrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
panic(ERR_HW_NOT_SUPPORTED)
}
@(private)
ctr_blocks_hw :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) {
panic(ERR_HW_NOT_SUPPORTED)
}
@(private)
gcm_seal_hw :: proc(ctx: ^Context_Impl_Hardware, dst, tag, nonce, aad, plaintext: []byte) {
panic(ERR_HW_NOT_SUPPORTED)
}
@(private)
gcm_open_hw :: proc(ctx: ^Context_Impl_Hardware, dst, nonce, aad, ciphertext, tag: []byte) -> bool {
panic(ERR_HW_NOT_SUPPORTED)
}

View File

@@ -25,6 +25,7 @@ import rbtree "core:container/rbtree"
import topological_sort "core:container/topological_sort"
import crypto "core:crypto"
import aes "core:crypto/aes"
import blake2b "core:crypto/blake2b"
import blake2s "core:crypto/blake2s"
import chacha20 "core:crypto/chacha20"
@@ -150,6 +151,7 @@ _ :: rbtree
_ :: topological_sort
_ :: crypto
_ :: crypto_hash
_ :: aes
_ :: blake2b
_ :: blake2s
_ :: chacha20

View File

@@ -33,6 +33,7 @@ main :: proc() {
test_kdf(&t) // After hash/mac tests because those should pass first.
test_ecc25519(&t)
test_aes(&t)
test_chacha20(&t)
test_chacha20poly1305(&t)
test_sha3_variants(&t)

View File

@@ -0,0 +1,462 @@
package test_core_crypto
import "base:runtime"
import "core:encoding/hex"
import "core:fmt"
import "core:testing"
import "core:crypto/aes"
import "core:crypto/sha2"
import tc "tests:common"
@(test)
test_aes :: proc(t: ^testing.T) {
runtime.DEFAULT_TEMP_ALLOCATOR_TEMP_GUARD()
tc.log(t, "Testing AES")
impls := make([dynamic]aes.Implementation, 0, 2)
append(&impls, aes.Implementation.Portable)
if aes.is_hardware_accelerated() {
append(&impls, aes.Implementation.Hardware)
}
for impl in impls {
test_aes_ecb(t, impl)
test_aes_ctr(t, impl)
test_aes_gcm(t, impl)
}
}
@(test)
test_aes_ecb :: proc(t: ^testing.T, impl: aes.Implementation) {
tc.log(t, fmt.tprintf("Testing AES-ECB/%v", impl))
test_vectors := []struct {
key: string,
plaintext: string,
ciphertext: string,
} {
// http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
{
"2b7e151628aed2a6abf7158809cf4f3c",
"6bc1bee22e409f96e93d7e117393172a",
"3ad77bb40d7a3660a89ecaf32466ef97",
},
{
"2b7e151628aed2a6abf7158809cf4f3c",
"ae2d8a571e03ac9c9eb76fac45af8e51",
"f5d3d58503b9699de785895a96fdbaaf",
},
{
"2b7e151628aed2a6abf7158809cf4f3c",
"30c81c46a35ce411e5fbc1191a0a52ef",
"43b1cd7f598ece23881b00e3ed030688",
},
{
"2b7e151628aed2a6abf7158809cf4f3c",
"f69f2445df4f9b17ad2b417be66c3710",
"7b0c785e27e8ad3f8223207104725dd4",
},
{
"8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b",
"6bc1bee22e409f96e93d7e117393172a",
"bd334f1d6e45f25ff712a214571fa5cc",
},
{
"8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b",
"ae2d8a571e03ac9c9eb76fac45af8e51",
"974104846d0ad3ad7734ecb3ecee4eef",
},
{
"8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b",
"30c81c46a35ce411e5fbc1191a0a52ef",
"ef7afd2270e2e60adce0ba2face6444e",
},
{
"8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b",
"f69f2445df4f9b17ad2b417be66c3710",
"9a4b41ba738d6c72fb16691603c18e0e",
},
{
"603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4",
"6bc1bee22e409f96e93d7e117393172a",
"f3eed1bdb5d2a03c064b5a7e3db181f8",
},
{
"603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4",
"ae2d8a571e03ac9c9eb76fac45af8e51",
"591ccb10d410ed26dc5ba74a31362870",
},
{
"603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4",
"30c81c46a35ce411e5fbc1191a0a52ef",
"b6ed21b99ca6f4f9f153e7b1beafed1d",
},
{
"603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4",
"f69f2445df4f9b17ad2b417be66c3710",
"23304b7a39f9f3ff067d8d8f9e24ecc7",
},
}
for v, _ in test_vectors {
key, _ := hex.decode(transmute([]byte)(v.key), context.temp_allocator)
plaintext, _ := hex.decode(transmute([]byte)(v.plaintext), context.temp_allocator)
ciphertext, _ := hex.decode(transmute([]byte)(v.ciphertext), context.temp_allocator)
ctx: aes.Context_ECB
dst: [aes.BLOCK_SIZE]byte
aes.init_ecb(&ctx, key, impl)
aes.encrypt_ecb(&ctx, dst[:], plaintext)
dst_str := string(hex.encode(dst[:], context.temp_allocator))
tc.expect(
t,
dst_str == v.ciphertext,
fmt.tprintf(
"AES-ECB/%v: Expected: %s for encrypt(%s, %s), but got %s instead",
impl,
v.ciphertext,
v.key,
v.plaintext,
dst_str,
),
)
aes.decrypt_ecb(&ctx, dst[:], ciphertext)
dst_str = string(hex.encode(dst[:], context.temp_allocator))
tc.expect(
t,
dst_str == v.plaintext,
fmt.tprintf(
"AES-ECB/%v: Expected: %s for decrypt(%s, %s), but got %s instead",
impl,
v.plaintext,
v.key,
v.ciphertext,
dst_str,
),
)
}
}
@(test)
test_aes_ctr :: proc(t: ^testing.T, impl: aes.Implementation) {
tc.log(t, fmt.tprintf("Testing AES-CTR/%v", impl))
test_vectors := []struct {
key: string,
iv: string,
plaintext: string,
ciphertext: string,
} {
// http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
{
"2b7e151628aed2a6abf7158809cf4f3c",
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
"6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710",
"874d6191b620e3261bef6864990db6ce9806f66b7970fdff8617187bb9fffdff5ae4df3edbd5d35e5b4f09020db03eab1e031dda2fbe03d1792170a0f3009cee",
},
{
"8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b",
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
"6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710",
"1abc932417521ca24f2b0459fe7e6e0b090339ec0aa6faefd5ccc2c6f4ce8e941e36b26bd1ebc670d1bd1d665620abf74f78a7f6d29809585a97daec58c6b050",
},
{
"603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4",
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
"6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710",
"601ec313775789a5b7a7f504bbf3d228f443e3ca4d62b59aca84e990cacaf5c52b0930daa23de94ce87017ba2d84988ddfc9c58db67aada613c2dd08457941a6",
},
}
for v, _ in test_vectors {
key, _ := hex.decode(transmute([]byte)(v.key), context.temp_allocator)
iv, _ := hex.decode(transmute([]byte)(v.iv), context.temp_allocator)
plaintext, _ := hex.decode(transmute([]byte)(v.plaintext), context.temp_allocator)
ciphertext, _ := hex.decode(transmute([]byte)(v.ciphertext), context.temp_allocator)
dst := make([]byte, len(ciphertext), context.temp_allocator)
ctx: aes.Context_CTR
aes.init_ctr(&ctx, key, iv, impl)
aes.xor_bytes_ctr(&ctx, dst, plaintext)
dst_str := string(hex.encode(dst[:], context.temp_allocator))
tc.expect(
t,
dst_str == v.ciphertext,
fmt.tprintf(
"AES-CTR/%v: Expected: %s for encrypt(%s, %s, %s), but got %s instead",
impl,
v.ciphertext,
v.key,
v.iv,
v.plaintext,
dst_str,
),
)
}
// Incrementally read 1, 2, 3, ..., 2048 bytes of keystream, and
// compare the SHA-512/256 digest with a known value. Results
// and testcase taken from a known good implementation.
tmp := make([]byte, 2048, context.temp_allocator)
ctx: aes.Context_CTR
key: [aes.KEY_SIZE_256]byte
nonce: [aes.CTR_IV_SIZE]byte
aes.init_ctr(&ctx, key[:], nonce[:])
h_ctx: sha2.Context_512
sha2.init_512_256(&h_ctx)
for i := 1; i < 2048; i = i + 1 {
aes.keystream_bytes_ctr(&ctx, tmp[:i])
sha2.update(&h_ctx, tmp[:i])
}
digest: [32]byte
sha2.final(&h_ctx, digest[:])
digest_str := string(hex.encode(digest[:], context.temp_allocator))
expected_digest_str := "d4445343afeb9d1237f95b10d00358aed4c1d7d57c9fe480cd0afb5e2ffd448c"
tc.expect(
t,
expected_digest_str == digest_str,
fmt.tprintf(
"AES-CTR/%v: Expected %s for keystream digest, but got %s instead",
impl,
expected_digest_str,
digest_str,
),
)
}
@(test)
test_aes_gcm :: proc(t: ^testing.T, impl: aes.Implementation) {
tc.log(t, fmt.tprintf("Testing AES-GCM/%v", impl))
// NIST did a reorg of their site, so the source of the test vectors
// is only available from an archive. The commented out tests are
// for non-96-bit IVs which our implementation does not support.
//
// https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
test_vectors := []struct {
key: string,
iv: string,
aad: string,
plaintext: string,
ciphertext: string,
tag: string,
} {
{
"00000000000000000000000000000000",
"000000000000000000000000",
"",
"",
"",
"58e2fccefa7e3061367f1d57a4e7455a",
},
{
"00000000000000000000000000000000",
"000000000000000000000000",
"",
"00000000000000000000000000000000",
"0388dace60b6a392f328c2b971b2fe78",
"ab6e47d42cec13bdf53a67b21257bddf",
},
{
"feffe9928665731c6d6a8f9467308308",
"cafebabefacedbaddecaf888",
"",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255",
"42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091473f5985",
"4d5c2af327cd64a62cf35abd2ba6fab4",
},
{
"feffe9928665731c6d6a8f9467308308",
"cafebabefacedbaddecaf888",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091",
"5bc94fbc3221a5db94fae95ae7121a47",
},
/*
{
"feffe9928665731c6d6a8f9467308308",
"cafebabefacedbad",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"61353b4c2806934a777ff51fa22a4755699b2a714fcdc6f83766e5f97b6c742373806900e49f24b22b097544d4896b424989b5e1ebac0f07c23f4598",
"3612d2e79e3b0785561be14aaca2fccb",
},
{
"feffe9928665731c6d6a8f9467308308",
"9313225df88406e555909c5aff5269aa6a7a9538534f7da1e4c303d2a318a728c3c0c95156809539fcf0e2429a6b525416aedbf5a0de6a57a637b39b",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"8ce24998625615b603a033aca13fb894be9112a5c3a211a8ba262a3cca7e2ca701e4a9a4fba43c90ccdcb281d48c7c6fd62875d2aca417034c34aee5",
"619cc5aefffe0bfa462af43c1699d050",
},
*/
{
"000000000000000000000000000000000000000000000000",
"000000000000000000000000",
"",
"",
"",
"cd33b28ac773f74ba00ed1f312572435",
},
{
"000000000000000000000000000000000000000000000000",
"000000000000000000000000",
"",
"00000000000000000000000000000000",
"98e7247c07f0fe411c267e4384b0f600",
"2ff58d80033927ab8ef4d4587514f0fb",
},
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c",
"cafebabefacedbaddecaf888",
"",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255",
"3980ca0b3c00e841eb06fac4872a2757859e1ceaa6efd984628593b40ca1e19c7d773d00c144c525ac619d18c84a3f4718e2448b2fe324d9ccda2710acade256",
"9924a7c8587336bfb118024db8674a14",
},
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c",
"cafebabefacedbaddecaf888",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"3980ca0b3c00e841eb06fac4872a2757859e1ceaa6efd984628593b40ca1e19c7d773d00c144c525ac619d18c84a3f4718e2448b2fe324d9ccda2710",
"2519498e80f1478f37ba55bd6d27618c",
},
/*
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c",
"cafebabefacedbad",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"0f10f599ae14a154ed24b36e25324db8c566632ef2bbb34f8347280fc4507057fddc29df9a471f75c66541d4d4dad1c9e93a19a58e8b473fa0f062f7",
"65dcc57fcf623a24094fcca40d3533f8",
},
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c",
"9313225df88406e555909c5aff5269aa6a7a9538534f7da1e4c303d2a318a728c3c0c95156809539fcf0e2429a6b525416aedbf5a0de6a57a637b39b",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"d27e88681ce3243c4830165a8fdcf9ff1de9a1d8e6b447ef6ef7b79828666e4581e79012af34ddd9e2f037589b292db3e67c036745fa22e7e9b7373b",
"dcf566ff291c25bbb8568fc3d376a6d9",
},
*/
{
"0000000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000",
"",
"",
"",
"530f8afbc74536b9a963b4f1c4cb738b",
},
{
"0000000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000",
"",
"00000000000000000000000000000000",
"cea7403d4d606b6e074ec5d3baf39d18",
"d0d1c8a799996bf0265b98b5d48ab919",
},
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308",
"cafebabefacedbaddecaf888",
"",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255",
"522dc1f099567d07f47f37a32a84427d643a8cdcbfe5c0c97598a2bd2555d1aa8cb08e48590dbb3da7b08b1056828838c5f61e6393ba7a0abcc9f662898015ad",
"b094dac5d93471bdec1a502270e3cc6c",
},
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308",
"cafebabefacedbaddecaf888",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"522dc1f099567d07f47f37a32a84427d643a8cdcbfe5c0c97598a2bd2555d1aa8cb08e48590dbb3da7b08b1056828838c5f61e6393ba7a0abcc9f662",
"76fc6ece0f4e1768cddf8853bb2d551b",
},
/*
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308",
"cafebabefacedbad",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"c3762df1ca787d32ae47c13bf19844cbaf1ae14d0b976afac52ff7d79bba9de0feb582d33934a4f0954cc2363bc73f7862ac430e64abe499f47c9b1f",
"3a337dbf46a792c45e454913fe2ea8f2",
},
{
"feffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308",
"9313225df88406e555909c5aff5269aa6a7a9538534f7da1e4c303d2a318a728c3c0c95156809539fcf0e2429a6b525416aedbf5a0de6a57a637b39b",
"feedfacedeadbeeffeedfacedeadbeefabaddad2",
"d9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39",
"5a8def2f0c9e53f1f75d7853659e2a20eeb2b22aafde6419a058ab4f6f746bf40fc0c3b780f244452da3ebf1c5d82cdea2418997200ef82e44ae7e3f",
"a44a8266ee1c8eb0c8b5d4cf5ae9f19a",
},
*/
}
for v, _ in test_vectors {
key, _ := hex.decode(transmute([]byte)(v.key), context.temp_allocator)
iv, _ := hex.decode(transmute([]byte)(v.iv), context.temp_allocator)
aad, _ := hex.decode(transmute([]byte)(v.aad), context.temp_allocator)
plaintext, _ := hex.decode(transmute([]byte)(v.plaintext), context.temp_allocator)
ciphertext, _ := hex.decode(transmute([]byte)(v.ciphertext), context.temp_allocator)
tag, _ := hex.decode(transmute([]byte)(v.tag), context.temp_allocator)
tag_ := make([]byte, len(tag), context.temp_allocator)
dst := make([]byte, len(ciphertext), context.temp_allocator)
ctx: aes.Context_GCM
aes.init_gcm(&ctx, key, impl)
aes.seal_gcm(&ctx, dst, tag_, iv, aad, plaintext)
dst_str := string(hex.encode(dst[:], context.temp_allocator))
tag_str := string(hex.encode(tag_[:], context.temp_allocator))
tc.expect(
t,
dst_str == v.ciphertext && tag_str == v.tag,
fmt.tprintf(
"AES-GCM/%v: Expected: (%s, %s) for seal(%s, %s, %s, %s), but got (%s, %s) instead",
impl,
v.ciphertext,
v.tag,
v.key,
v.iv,
v.aad,
v.plaintext,
dst_str,
tag_str,
),
)
ok := aes.open_gcm(&ctx, dst, iv, aad, ciphertext, tag)
dst_str = string(hex.encode(dst[:], context.temp_allocator))
tc.expect(
t,
ok && dst_str == v.plaintext,
fmt.tprintf(
"AES-GCM/%v: Expected: (%s, true) for open(%s, %s, %s, %s, %s), but got (%s, %s) instead",
impl,
v.plaintext,
v.key,
v.iv,
v.aad,
v.ciphertext,
v.tag,
dst_str,
ok,
),
)
}
}

View File

@@ -6,6 +6,7 @@ import "core:fmt"
import "core:testing"
import "core:time"
import "core:crypto/aes"
import "core:crypto/chacha20"
import "core:crypto/chacha20poly1305"
import "core:crypto/ed25519"
@@ -25,6 +26,7 @@ bench_crypto :: proc(t: ^testing.T) {
bench_chacha20(t)
bench_poly1305(t)
bench_chacha20poly1305(t)
bench_aes256_gcm(t)
bench_ed25519(t)
bench_x25519(t)
}
@@ -134,6 +136,26 @@ _benchmark_chacha20poly1305 :: proc(
return nil
}
_benchmark_aes256_gcm :: proc(
options: ^time.Benchmark_Options,
allocator := context.allocator,
) -> (
err: time.Benchmark_Error,
) {
buf := options.input
nonce: [aes.GCM_NONCE_SIZE]byte
tag: [aes.GCM_TAG_SIZE]byte = ---
ctx := transmute(^aes.Context_GCM)context.user_ptr
for _ in 0 ..= options.rounds {
aes.seal_gcm(ctx, buf, tag[:], nonce[:], nil, buf)
}
options.count = options.rounds
options.processed = options.rounds * options.bytes
return nil
}
benchmark_print :: proc(name: string, options: ^time.Benchmark_Options) {
fmt.printf(
"\t[%v] %v rounds, %v bytes processed in %v ns\n\t\t%5.3f rounds/s, %5.3f MiB/s\n",
@@ -221,6 +243,44 @@ bench_chacha20poly1305 :: proc(t: ^testing.T) {
benchmark_print(name, options)
}
bench_aes256_gcm :: proc(t: ^testing.T) {
name := "AES256-GCM 64 bytes"
options := &time.Benchmark_Options {
rounds = 1_000,
bytes = 64,
setup = _setup_sized_buf,
bench = _benchmark_aes256_gcm,
teardown = _teardown_sized_buf,
}
key := [aes.KEY_SIZE_256]byte {
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
}
ctx: aes.Context_GCM
aes.init_gcm(&ctx, key[:])
context.user_ptr = &ctx
err := time.benchmark(options, context.allocator)
tc.expect(t, err == nil, name)
benchmark_print(name, options)
name = "AES256-GCM 1024 bytes"
options.bytes = 1024
err = time.benchmark(options, context.allocator)
tc.expect(t, err == nil, name)
benchmark_print(name, options)
name = "AES256-GCM 65536 bytes"
options.bytes = 65536
err = time.benchmark(options, context.allocator)
tc.expect(t, err == nil, name)
benchmark_print(name, options)
}
bench_ed25519 :: proc(t: ^testing.T) {
iters :: 10000