This commit is contained in:
Zachary Pierson
2017-04-02 03:29:51 -05:00
18 changed files with 1716 additions and 692 deletions

View File

@@ -4,7 +4,7 @@
set exe_name=odin.exe
:: Debug = 0, Release = 1
set release_mode=1
set release_mode=0
set compiler_flags= -nologo -Oi -TC -fp:fast -fp:except- -Gm- -MP -FC -GS- -EHsc- -GR-
if %release_mode% EQU 0 ( rem Debug

View File

@@ -1,320 +1,10 @@
#import "atomic.odin";
#import "hash.odin";
#import "mem.odin";
#import "opengl.odin";
#import "strconv.odin";
#import "sync.odin";
#import win32 "sys/windows.odin";
#import "fmt.odin";
#import "os.odin";
#import "math.odin";
main :: proc() {
when true {
/*
Added:
* Unexported entities and fields using an underscore prefix
- See `sync.odin` and explain
Removed:
* Maybe/option types
* Remove `type` keyword and other "reserved" keywords
* ..< and ... removed and replace with .. (half-closed range)
Changed:
* `compile_assert` and `assert`return the value of the condition for semantic reasons
* thread_local -> #thread_local
* #include -> #load
* Files only get checked if they are actually used
* match x in y {} // For type match statements
* Version numbering now starts from 0.1.0 and uses the convention:
- major.minor.patch
* Core library additions to Windows specific stuff
*/
{
Fruit :: enum {
APPLE,
BANANA,
COCONUT,
}
fmt.println(Fruit.names);
}
{
A :: struct {x, y: f32};
B :: struct #align 16 {x, y: f32};
fmt.println("align_of(A) =", align_of(A));
fmt.println("align_of(B) =", align_of(B));
}
{
// Removal of ..< and ...
for i in 0..16 {
}
// Is similar to
for _i := 0; _i < 16; _i++ { immutable i := _i;
}
}
{
#label thing
for i in 0..10 {
for j in i+1..10 {
if j == 2 {
fmt.println(i, j);
continue thing;
}
if j == 3 {
break thing;
}
}
}
// Works with, `for`, `for in`, `match`, `match in`
// NOTE(bill): This solves most of the problems I need `goto` for
}
{
t := type_info(int);
using Type_Info;
match i in t {
case Integer, Float:
fmt.println("It's a number");
}
x: any = 123;
#label foo
match i in x {
case int, f32:
fmt.println("It's an int or f32");
break foo;
}
}
{
cond := true;
x: int;
if cond {
x = 3;
} else {
x = 4;
}
// Ternary operator
y := cond ? 3 : 4;
FOO :: true ? 123 : 432; // Constant ternary expression
fmt.println("Ternary values:", y, FOO);
}
{
// Slices now store a capacity
buf: [256]byte;
s: []byte;
s = buf[..0]; // == buf[0..0];
fmt.println("count =", s.count);
fmt.println("capacity =", s.capacity);
append(s, 1, 2, 3);
fmt.println(s);
s = buf[1..2..3];
fmt.println("count =", s.count);
fmt.println("capacity =", s.capacity);
fmt.println(s);
clear(s); // Sets count to zero
s.count = 0; // Equivalent
}
{
Foo :: struct {
x, y, z: f32,
ok: bool,
flags: u32,
}
foo_array: [256]Foo;
foo_as_bytes: []byte = slice_to_bytes(foo_array[..]);
// Useful for things like
// os.write(handle, foo_as_bytes);
foo_slice := slice_ptr(cast(^Foo)foo_as_bytes.data, foo_as_bytes.count/size_of(Foo), foo_as_bytes.capacity/size_of(Foo));
// Question: Should there be a bytes_to_slice procedure or is it clearer to do this even if it is error prone?
// And if so what would the syntax be?
// slice_transmute([]Foo, foo_as_bytes);
}
{
Vec3 :: [vector 3]f32;
x := Vec3{1, 2, 3};
y := Vec3{4, 5, 6};
fmt.println(x < y);
fmt.println(x + y);
fmt.println(x - y);
fmt.println(x * y);
fmt.println(x / y);
for i in x {
fmt.println(i);
}
compile_assert(size_of([vector 7]bool) == size_of([7]bool));
compile_assert(size_of([vector 7]i32) == size_of([7]i32));
// align_of([vector 7]i32) != align_of([7]i32) // this may be the case
}
{
// fmt.* changes
// bprint* returns `int` (bytes written)
// sprint* returns `string` (bytes written as a string)
data: [256]byte;
str := fmt.sprintf(data[..0], "Hellope %d %s %c", 123, "others", '!');
fmt.println(str);
buf := data[..0];
count := fmt.bprintf(^buf, "Hellope %d %s %c", 123, "others", '!');
fmt.println(cast(string)buf[..count]);
// NOTE(bill): We may change this but because this is a library feature, I am not that bothered yet
}
{
x: [dynamic]f64;
reserve(x, 16);
defer free(x); // `free` is overloaded for numerous types
// Number literals can have underscores in them for readability
append(x, 2_000_000.500_000, 3, 5, 7); // variadic append
for p, i in x {
if i > 0 { fmt.print(", "); }
fmt.print(p);
}
fmt.println();
}
{
// Dynamic array "literals"
x := [dynamic]f64{2_000_000.500_000, 3, 5, 7};
defer free(x);
fmt.println(x); // fmt.print* supports printing of dynamic types
clear(x);
fmt.println(x);
}
{
m: map[f32]int;
reserve(m, 16);
defer free(m);
m[1.0] = 1278;
m[2.0] = 7643;
m[3.0] = 564;
_, ok := m[3.0];
c := m[3.0];
assert(ok && c == 564);
fmt.print("map[");
i := 0;
for val, key in m {
if i > 0 {
fmt.print(", ");
}
fmt.printf("%v=%v", key, val);
i += 1;
}
fmt.println("]");
}
{
m := map[string]u32{
"a" = 56,
"b" = 13453,
"c" = 7654,
};
defer free(m);
c := m["c"];
_, ok := m["c"];
assert(ok && c == 7654);
fmt.println(m);
delete(m, "c"); // deletes entry with key "c"
_, found := m["c"];
assert(!found);
fmt.println(m);
clear(m);
fmt.println(m);
// NOTE: Fixed size maps are planned but we have not yet implemented
// them as we have had no need for them as of yet
}
{
Vector3 :: struct{x, y, z: f32};
Quaternion :: struct{x, y, z, w: f32};
Entity :: union {
// Common Fields
id: u64,
name: string,
using position: Vector3,
orientation: Quaternion,
flags: u32,
// Variants
Frog{
ribbit_volume: f32,
jump_height: f32,
},
Door{
openness: f32,
},
Map{
width, height: f32,
place_positions: []Vector3,
place_names: []string,
},
}
entity: Entity;
// implicit conversion from variant to base type
entity = Entity.Frog{
id = 1337,
ribbit_volume = 0.5,
jump_height = 2.1,
/*other data */
};
entity.name = "Frank";
entity.position = Vector3{1, 4, 9};
using Entity;
match e in entity {
case Frog:
fmt.println("Ribbit");
case Door:
fmt.println("Creak");
case Map:
fmt.println("Rustle");
default:
fmt.println("Just a normal entity");
}
if frog, ok := union_cast(Frog)entity; ok {
fmt.printf("The frog jumps %f feet high at %v\n", frog.jump_height, frog.position);
}
// Panics if not the correct type
frog: Frog;
frog = union_cast(Frog)entity;
frog, _ = union_cast(Frog)entity; // ignore error and force cast
}
x := 1+2i+3j+4k;
y := conj(x);
z := x/y;
fmt.println(z, abs(z));
}
}

View File

@@ -2,9 +2,7 @@
#import "os.odin";
#import "fmt.odin";
#import "mem.odin";
#import "utf8.odin";
#import "hash.odin";
// IMPORTANT NOTE(bill): `type_info` & `type_info_val` cannot be used within a
// #shared_global_scope due to the internals of the compiler.
@@ -41,6 +39,8 @@ Type_Info :: union {
Named{name: string, base: ^Type_Info},
Integer{size: int, signed: bool},
Float{size: int},
Complex{size: int},
Quaternion{size: int},
String{},
Boolean{},
Any{},
@@ -129,8 +129,6 @@ __trap :: proc() #foreign __llvm_core "llvm.trap";
read_cycle_counter :: proc() -> u64 #foreign __llvm_core "llvm.readcyclecounter";
// IMPORTANT NOTE(bill): Must be in this order (as the compiler relies upon it)
Allocator_Mode :: enum u8 {
ALLOC,
@@ -230,7 +228,7 @@ default_resize_align :: proc(old_memory: rawptr, old_size, new_size, alignment:
return nil;
}
mem.copy(new_memory, old_memory, min(old_size, new_size));;
__mem_copy(new_memory, old_memory, min(old_size, new_size));;
free(old_memory);
return new_memory;
}
@@ -289,7 +287,7 @@ __string_eq :: proc(a, b: string) -> bool {
}
__string_cmp :: proc(a, b: string) -> int {
return mem.compare(cast([]byte)a, cast([]byte)b);
return __mem_compare(a.data, b.data, min(a.count, b.count));
}
__string_ne :: proc(a, b: string) -> bool #inline { return !__string_eq(a, b); }
@@ -299,6 +297,26 @@ __string_le :: proc(a, b: string) -> bool #inline { return __string_cmp(a, b) <=
__string_ge :: proc(a, b: string) -> bool #inline { return __string_cmp(a, b) >= 0; }
__complex64_eq :: proc(a, b: complex64) -> bool #inline { return real(a) == real(b) && imag(a) == imag(b); }
__complex64_ne :: proc(a, b: complex64) -> bool #inline { return real(a) != real(b) || imag(a) != imag(b); }
__complex128_eq :: proc(a, b: complex128) -> bool #inline { return real(a) == real(b) && imag(a) == imag(b); }
__complex128_ne :: proc(a, b: complex128) -> bool #inline { return real(a) != real(b) || imag(a) != imag(b); }
__quaternion128_eq :: proc(a, b: quaternion128) -> bool #inline {
return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b);
}
__quaternion128_ne :: proc(a, b: quaternion128) -> bool #inline {
return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b);
}
__quaternion256_eq :: proc(a, b: quaternion256) -> bool #inline {
return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b);
}
__quaternion256_ne :: proc(a, b: quaternion256) -> bool #inline {
return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b);
}
__assert :: proc(file: string, line, column: int, msg: string) #inline {
fmt.fprintf(os.stderr, "%s(%d:%d) Runtime assertion: %s\n",
file, line, column, msg);
@@ -380,6 +398,26 @@ __mem_compare :: proc(a, b: ^byte, n: int) -> int {
return 0;
}
__sqrt_f32 :: proc(x: f32) -> f32 #foreign __llvm_core "llvm.sqrt.f32";
__sqrt_f64 :: proc(x: f64) -> f64 #foreign __llvm_core "llvm.sqrt.f64";
__abs_complex64 :: proc(x: complex64) -> f32 #inline {
r, i := real(x), imag(x);
return __sqrt_f32(r*r + i*i);
}
__abs_complex128 :: proc(x: complex128) -> f64 #inline {
r, i := real(x), imag(x);
return __sqrt_f64(r*r + i*i);
}
__abs_quaternion128 :: proc(x: quaternion128) -> f32 #inline {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
return __sqrt_f32(r*r + i*i + j*j + k*k);
}
__abs_quaternion256 :: proc(x: quaternion256) -> f64 #inline {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
return __sqrt_f64(r*r + i*i + j*j + k*k);
}
Raw_Any :: struct #ordered {
type_info: ^Type_Info,
@@ -459,7 +497,7 @@ __dynamic_array_append :: proc(array_: rawptr, elem_size, elem_align: int,
}
data := cast(^byte)array.data;
assert(data != nil);
mem.copy(data + (elem_size*array.count), items, elem_size * item_count);
__mem_copy(data + (elem_size*array.count), items, elem_size * item_count);
array.count += item_count;
return array.count;
}
@@ -478,7 +516,7 @@ __dynamic_array_append_nothing :: proc(array_: rawptr, elem_size, elem_align: in
}
data := cast(^byte)array.data;
assert(data != nil);
mem.zero(data + (elem_size*array.count), elem_size);
__mem_zero(data + (elem_size*array.count), elem_size);
array.count++;
return array.count;
}
@@ -495,7 +533,7 @@ __slice_append :: proc(slice_: rawptr, elem_size, elem_align: int,
if item_count > 0 {
data := cast(^byte)slice.data;
assert(data != nil);
mem.copy(data + (elem_size*slice.count), items, elem_size * item_count);
__mem_copy(data + (elem_size*slice.count), items, elem_size * item_count);
slice.count += item_count;
}
return slice.count;
@@ -505,7 +543,14 @@ __slice_append :: proc(slice_: rawptr, elem_size, elem_align: int,
// Map stuff
__default_hash :: proc(data: []byte) -> u64 {
return hash.fnv64a(data);
fnv64a :: proc(data: []byte) -> u64 {
h: u64 = 0xcbf29ce484222325;
for b in data {
h = (h ~ cast(u64)b) * 0x100000001b3;
}
return h;
}
return fnv64a(data);
}
__default_hash_string :: proc(s: string) -> u64 {
return __default_hash(cast([]byte)s);
@@ -576,7 +621,7 @@ __dynamic_map_rehash :: proc(using header: __Map_Header, new_count: int) {
e := __dynamic_map_get_entry(new_header, j);
e.next = fr.entry_index;
ndata := cast(^byte)e;
mem.copy(ndata+value_offset, data+value_offset, entry_size-value_offset);
__mem_copy(ndata+value_offset, data+value_offset, entry_size-value_offset);
if __dynamic_map_full(new_header) {
__dynamic_map_grow(new_header);
}
@@ -617,7 +662,7 @@ __dynamic_map_set :: proc(using h: __Map_Header, key: __Map_Key, value: rawptr)
{
data := cast(^byte)__dynamic_map_get_entry(h, index);
val := data+value_offset;
mem.copy(val, value, entry_size-value_offset);
__mem_copy(val, value, entry_size-value_offset);
}
if __dynamic_map_full(h) {
@@ -697,7 +742,7 @@ __dynamic_map_erase :: proc(using h: __Map_Header, fr: __Map_Find_Result) {
if fr.entry_index == m.entries.count-1 {
m.entries.count--;
}
mem.copy(__dynamic_map_get_entry(h, fr.entry_index), __dynamic_map_get_entry(h, m.entries.count-1), entry_size);
__mem_copy(__dynamic_map_get_entry(h, fr.entry_index), __dynamic_map_get_entry(h, m.entries.count-1), entry_size);
last := __dynamic_map_find(h, __dynamic_map_get_entry(h, fr.entry_index).key);
if last.entry_prev >= 0 {
__dynamic_map_get_entry(h, last.entry_prev).next = fr.entry_index;

View File

@@ -110,6 +110,16 @@ write_type :: proc(buf: ^[]byte, ti: ^Type_Info) {
case 4: write_string(buf, "f32");
case 8: write_string(buf, "f64");
}
case Complex:
match info.size {
case 8: write_string(buf, "complex64");
case 16: write_string(buf, "complex128");
}
case Quaternion:
match info.size {
case 16: write_string(buf, "quaternion128");
case 32: write_string(buf, "quaternion");
}
case String: write_string(buf, "string");
case Boolean: write_string(buf, "bool");
case Pointer:
@@ -731,10 +741,12 @@ fmt_value :: proc(fi: ^Fmt_Info, v: any, verb: rune) {
fmt_value(fi, any{info.base, v.data}, verb);
}
case Boolean: fmt_arg(fi, v, verb);
case Float: fmt_arg(fi, v, verb);
case Integer: fmt_arg(fi, v, verb);
case String: fmt_arg(fi, v, verb);
case Boolean: fmt_arg(fi, v, verb);
case Integer: fmt_arg(fi, v, verb);
case Float: fmt_arg(fi, v, verb);
case Complex: fmt_arg(fi, v, verb);
case Quaternion: fmt_arg(fi, v, verb);
case String: fmt_arg(fi, v, verb);
case Pointer:
if v.type_info == type_info(^Type_Info) {
@@ -883,6 +895,51 @@ fmt_value :: proc(fi: ^Fmt_Info, v: any, verb: rune) {
}
}
fmt_complex :: proc(fi: ^Fmt_Info, c: complex128, bits: int, verb: rune) {
match verb {
case 'f', 'F', 'v':
r := real(c);
i := imag(c);
fmt_float(fi, r, bits/2, verb);
if !fi.plus && i >= 0 {
write_rune(fi.buf, '+');
}
fmt_float(fi, i, bits/2, verb);
write_rune(fi.buf, 'i');
default:
fmt_bad_verb(fi, verb);
return;
}
}
fmt_quaternion :: proc(fi: ^Fmt_Info, c: quaternion256, bits: int, verb: rune) {
match verb {
case 'f', 'F', 'v':
r := real(c);
i := imag(c);
j := jmag(c);
k := kmag(c);
fmt_float(fi, r, bits/4, verb);
if !fi.plus && i >= 0 { write_rune(fi.buf, '+'); }
fmt_float(fi, i, bits/4, verb);
write_rune(fi.buf, 'i');
if !fi.plus && j >= 0 { write_rune(fi.buf, '+'); }
fmt_float(fi, j, bits/4, verb);
write_rune(fi.buf, 'j');
if !fi.plus && k >= 0 { write_rune(fi.buf, '+'); }
fmt_float(fi, k, bits/4, verb);
write_rune(fi.buf, 'k');
default:
fmt_bad_verb(fi, verb);
return;
}
}
fmt_arg :: proc(fi: ^Fmt_Info, arg: any, verb: rune) {
if arg.data == nil || arg.type_info == nil {
write_string(fi.buf, "<nil>");
@@ -903,9 +960,13 @@ fmt_arg :: proc(fi: ^Fmt_Info, arg: any, verb: rune) {
base_arg := arg;
base_arg.type_info = type_info_base(base_arg.type_info);
match a in base_arg {
case bool: fmt_bool(fi, a, verb);
case f32: fmt_float(fi, cast(f64)a, 32, verb);
case f64: fmt_float(fi, a, 64, verb);
case bool: fmt_bool(fi, a, verb);
case f32: fmt_float(fi, cast(f64)a, 32, verb);
case f64: fmt_float(fi, a, 64, verb);
case complex64: fmt_complex(fi, cast(complex128)a, 64, verb);
case complex128: fmt_complex(fi, a, 128, verb);
case quaternion128: fmt_quaternion(fi, cast(quaternion256)a, 128, verb);
case quaternion256: fmt_quaternion(fi, a, 256, verb);
case int: fmt_int(fi, cast(u64)a, true, 8*size_of(int), verb);
case i8: fmt_int(fi, cast(u64)a, true, 8, verb);

View File

@@ -27,14 +27,14 @@ Mat4 :: [4]Vec4;
sqrt :: proc(x: f32) -> f32 #foreign __llvm_core "llvm.sqrt.f32";
sqrt :: proc(x: f64) -> f64 #foreign __llvm_core "llvm.sqrt.f64";
sin :: proc(x: f32) -> f32 #foreign __llvm_core "llvm.sin.f32";
sin :: proc(x: f64) -> f64 #foreign __llvm_core "llvm.sin.f64";
sin :: proc(θ: f32) -> f32 #foreign __llvm_core "llvm.sin.f32";
sin :: proc(θ: f64) -> f64 #foreign __llvm_core "llvm.sin.f64";
cos :: proc(x: f32) -> f32 #foreign __llvm_core "llvm.cos.f32";
cos :: proc(x: f64) -> f64 #foreign __llvm_core "llvm.cos.f64";
cos :: proc(θ: f32) -> f32 #foreign __llvm_core "llvm.cos.f32";
cos :: proc(θ: f64) -> f64 #foreign __llvm_core "llvm.cos.f64";
tan :: proc(x: f32) -> f32 #inline { return sin(x)/cos(x); }
tan :: proc(x: f64) -> f64 #inline { return sin(x)/cos(x); }
tan :: proc(θ: f32) -> f32 #inline { return sin(θ)/cos(θ); }
tan :: proc(θ: f64) -> f64 #inline { return sin(θ)/cos(θ); }
pow :: proc(x, power: f32) -> f32 #foreign __llvm_core "llvm.pow.f32";
pow :: proc(x, power: f64) -> f64 #foreign __llvm_core "llvm.pow.f64";
@@ -43,8 +43,8 @@ pow :: proc(x, power: f64) -> f64 #foreign __llvm_core "llvm.pow.f64";
lerp :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t; }
lerp :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t; }
sign :: proc(x: f32) -> f32 { if x >= 0 { return +1; } return -1; }
sign :: proc(x: f64) -> f64 { if x >= 0 { return +1; } return -1; }
sign :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
sign :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
bit_reverse :: proc(b: u16) -> u16 #foreign __llvm_core "llvm.bitreverse.i16";
bit_reverse :: proc(b: u32) -> u32 #foreign __llvm_core "llvm.bitreverse.i32";

View File

@@ -1,6 +1,4 @@
#import w "sys/windows.odin";
#import "fmt.odin";
#import win32 "sys/windows.odin";
Handle :: int;
File_Time :: u64;
@@ -50,6 +48,8 @@ WSAECONNRESET: Errno : 10054;
ERROR_FILE_IS_PIPE: Errno : 1<<29 + 0;
// "Argv" arguments converted to Odin strings
args := _alloc_command_line_arguments();
open :: proc(path: string, mode: int, perm: u32) -> (Handle, Errno) {
@@ -59,22 +59,22 @@ open :: proc(path: string, mode: int, perm: u32) -> (Handle, Errno) {
access: u32;
match mode & (O_RDONLY|O_WRONLY|O_RDWR) {
case O_RDONLY: access = w.FILE_GENERIC_READ;
case O_WRONLY: access = w.FILE_GENERIC_WRITE;
case O_RDWR: access = w.FILE_GENERIC_READ | w.FILE_GENERIC_WRITE;
case O_RDONLY: access = win32.FILE_GENERIC_READ;
case O_WRONLY: access = win32.FILE_GENERIC_WRITE;
case O_RDWR: access = win32.FILE_GENERIC_READ | win32.FILE_GENERIC_WRITE;
}
if mode&O_CREAT != 0 {
access |= w.FILE_GENERIC_WRITE;
access |= win32.FILE_GENERIC_WRITE;
}
if mode&O_APPEND != 0 {
access &~= w.FILE_GENERIC_WRITE;
access |= w.FILE_APPEND_DATA;
access &~= win32.FILE_GENERIC_WRITE;
access |= win32.FILE_APPEND_DATA;
}
share_mode := cast(u32)(w.FILE_SHARE_READ|w.FILE_SHARE_WRITE);
sa: ^w.Security_Attributes = nil;
sa_inherit := w.Security_Attributes{length = size_of(w.Security_Attributes), inherit_handle = 1};
share_mode := cast(u32)(win32.FILE_SHARE_READ|win32.FILE_SHARE_WRITE);
sa: ^win32.Security_Attributes = nil;
sa_inherit := win32.Security_Attributes{length = size_of(win32.Security_Attributes), inherit_handle = 1};
if mode&O_CLOEXEC == 0 {
sa = ^sa_inherit;
}
@@ -82,37 +82,37 @@ open :: proc(path: string, mode: int, perm: u32) -> (Handle, Errno) {
create_mode: u32;
match {
case mode&(O_CREAT|O_EXCL) == (O_CREAT | O_EXCL):
create_mode = w.CREATE_NEW;
create_mode = win32.CREATE_NEW;
case mode&(O_CREAT|O_TRUNC) == (O_CREAT | O_TRUNC):
create_mode = w.CREATE_ALWAYS;
create_mode = win32.CREATE_ALWAYS;
case mode&O_CREAT == O_CREAT:
create_mode = w.OPEN_ALWAYS;
create_mode = win32.OPEN_ALWAYS;
case mode&O_TRUNC == O_TRUNC:
create_mode = w.TRUNCATE_EXISTING;
create_mode = win32.TRUNCATE_EXISTING;
default:
create_mode = w.OPEN_EXISTING;
create_mode = win32.OPEN_EXISTING;
}
buf: [300]byte;
copy(buf[..], cast([]byte)path);
handle := cast(Handle)w.CreateFileA(^buf[0], access, share_mode, sa, create_mode, w.FILE_ATTRIBUTE_NORMAL, nil);
handle := cast(Handle)win32.CreateFileA(^buf[0], access, share_mode, sa, create_mode, win32.FILE_ATTRIBUTE_NORMAL, nil);
if handle != INVALID_HANDLE {
return handle, ERROR_NONE;
}
err := w.GetLastError();
err := win32.GetLastError();
return INVALID_HANDLE, cast(Errno)err;
}
close :: proc(fd: Handle) {
w.CloseHandle(cast(w.Handle)fd);
win32.CloseHandle(cast(win32.Handle)fd);
}
write :: proc(fd: Handle, data: []byte) -> (int, Errno) {
bytes_written: i32;
e := w.WriteFile(cast(w.Handle)fd, data.data, cast(i32)data.count, ^bytes_written, nil);
if e == w.FALSE {
err := w.GetLastError();
e := win32.WriteFile(cast(win32.Handle)fd, data.data, cast(i32)data.count, ^bytes_written, nil);
if e == win32.FALSE {
err := win32.GetLastError();
return 0, cast(Errno)err;
}
return cast(int)bytes_written, ERROR_NONE;
@@ -120,31 +120,30 @@ write :: proc(fd: Handle, data: []byte) -> (int, Errno) {
read :: proc(fd: Handle, data: []byte) -> (int, Errno) {
bytes_read: i32;
e := w.ReadFile(cast(w.Handle)fd, data.data, cast(u32)data.count, ^bytes_read, nil);
if e == w.FALSE {
err := w.GetLastError();
e := win32.ReadFile(cast(win32.Handle)fd, data.data, cast(u32)data.count, ^bytes_read, nil);
if e == win32.FALSE {
err := win32.GetLastError();
return 0, cast(Errno)err;
}
return cast(int)bytes_read, ERROR_NONE;
}
seek :: proc(fd: Handle, offset: i64, whence: int) -> (i64, Errno) {
using w;
w: u32;
match whence {
case 0: w = FILE_BEGIN;
case 1: w = FILE_CURRENT;
case 2: w = FILE_END;
case 0: w = win32.FILE_BEGIN;
case 1: w = win32.FILE_CURRENT;
case 2: w = win32.FILE_END;
}
hi := cast(i32)(offset>>32);
lo := cast(i32)(offset);
ft := GetFileType(cast(Handle)fd);
if ft == FILE_TYPE_PIPE {
ft := win32.GetFileType(cast(win32.Handle)fd);
if ft == win32.FILE_TYPE_PIPE {
return 0, ERROR_FILE_IS_PIPE;
}
dw_ptr := SetFilePointer(cast(Handle)fd, lo, ^hi, w);
if dw_ptr == INVALID_SET_FILE_POINTER {
err := GetLastError();
dw_ptr := win32.SetFilePointer(cast(win32.Handle)fd, lo, ^hi, w);
if dw_ptr == win32.INVALID_SET_FILE_POINTER {
err := win32.GetLastError();
return 0, cast(Errno)err;
}
return cast(i64)hi<<32 + cast(i64)dw_ptr, ERROR_NONE;
@@ -152,14 +151,14 @@ seek :: proc(fd: Handle, offset: i64, whence: int) -> (i64, Errno) {
// NOTE(bill): Uses startup to initialize it
stdin := get_std_handle(w.STD_INPUT_HANDLE);
stdout := get_std_handle(w.STD_OUTPUT_HANDLE);
stderr := get_std_handle(w.STD_ERROR_HANDLE);
stdin := get_std_handle(win32.STD_INPUT_HANDLE);
stdout := get_std_handle(win32.STD_OUTPUT_HANDLE);
stderr := get_std_handle(win32.STD_ERROR_HANDLE);
get_std_handle :: proc(h: int) -> Handle {
fd := w.GetStdHandle(cast(i32)h);
w.SetHandleInformation(fd, w.HANDLE_FLAG_INHERIT, 0);
fd := win32.GetStdHandle(cast(i32)h);
win32.SetHandleInformation(fd, win32.HANDLE_FLAG_INHERIT, 0);
return cast(Handle)fd;
}
@@ -169,23 +168,23 @@ get_std_handle :: proc(h: int) -> Handle {
last_write_time :: proc(fd: Handle) -> File_Time {
file_info: w.By_Handle_File_Information;
w.GetFileInformationByHandle(cast(w.Handle)fd, ^file_info);
file_info: win32.By_Handle_File_Information;
win32.GetFileInformationByHandle(cast(win32.Handle)fd, ^file_info);
lo := cast(File_Time)file_info.last_write_time.lo;
hi := cast(File_Time)file_info.last_write_time.hi;
return lo | hi << 32;
}
last_write_time_by_name :: proc(name: string) -> File_Time {
last_write_time: w.Filetime;
data: w.File_Attribute_Data;
last_write_time: win32.Filetime;
data: win32.File_Attribute_Data;
buf: [1024]byte;
assert(buf.count > name.count);
copy(buf[..], cast([]byte)name);
if w.GetFileAttributesExA(^buf[0], w.GetFileExInfoStandard, ^data) != 0 {
if win32.GetFileAttributesExA(^buf[0], win32.GetFileExInfoStandard, ^data) != 0 {
last_write_time = data.last_write_time;
}
@@ -209,7 +208,7 @@ read_entire_file :: proc(name: string) -> ([]byte, bool) {
defer close(fd);
length: i64;
file_size_ok := w.GetFileSizeEx(cast(w.Handle)fd, ^length) != 0;
file_size_ok := win32.GetFileSizeEx(cast(win32.Handle)fd, ^length) != 0;
if !file_size_ok {
return nil, false;
}
@@ -232,7 +231,7 @@ read_entire_file :: proc(name: string) -> ([]byte, bool) {
to_read = MAX;
}
w.ReadFile(cast(w.Handle)fd, ^data[total_read], to_read, ^single_read_length, nil);
win32.ReadFile(cast(win32.Handle)fd, ^data[total_read], to_read, ^single_read_length, nil);
if single_read_length <= 0 {
free(data);
return nil, false;
@@ -247,7 +246,7 @@ read_entire_file :: proc(name: string) -> ([]byte, bool) {
heap_alloc :: proc(size: int) -> rawptr {
return w.HeapAlloc(w.GetProcessHeap(), w.HEAP_ZERO_MEMORY, size);
return win32.HeapAlloc(win32.GetProcessHeap(), win32.HEAP_ZERO_MEMORY, size);
}
heap_resize :: proc(ptr: rawptr, new_size: int) -> rawptr {
if new_size == 0 {
@@ -257,25 +256,89 @@ heap_resize :: proc(ptr: rawptr, new_size: int) -> rawptr {
if ptr == nil {
return heap_alloc(new_size);
}
return w.HeapReAlloc(w.GetProcessHeap(), w.HEAP_ZERO_MEMORY, ptr, new_size);
return win32.HeapReAlloc(win32.GetProcessHeap(), win32.HEAP_ZERO_MEMORY, ptr, new_size);
}
heap_free :: proc(ptr: rawptr) {
if ptr == nil {
return;
}
w.HeapFree(w.GetProcessHeap(), 0, ptr);
win32.HeapFree(win32.GetProcessHeap(), 0, ptr);
}
exit :: proc(code: int) {
w.ExitProcess(cast(u32)code);
win32.ExitProcess(cast(u32)code);
}
current_thread_id :: proc() -> int {
return cast(int)w.GetCurrentThreadId();
return cast(int)win32.GetCurrentThreadId();
}
_alloc_command_line_arguments :: proc() -> []string {
alloc_ucs2_to_utf8 :: proc(wstr: ^u16) -> string {
wstr_len := 0;
for (wstr+wstr_len)^ != 0 {
wstr_len++;
}
len := 2*wstr_len-1;
buf := new_slice(byte, len+1);
str := slice_ptr(wstr, wstr_len+1);
i, j := 0, 0;
for str[j] != 0 {
match {
case str[j] < 0x80:
if i+1 > len {
return "";
}
buf[i] = cast(byte)str[j]; i++;
j++;
case str[j] < 0x800:
if i+2 > len {
return "";
}
buf[i] = cast(byte)(0xc0 + (str[j]>>6)); i++;
buf[i] = cast(byte)(0x80 + (str[j]&0x3f)); i++;
j++;
case 0xd800 <= str[j] && str[j] < 0xdc00:
if i+4 > len {
return "";
}
c := cast(rune)((str[j] - 0xd800) << 10) + cast(rune)((str[j+1]) - 0xdc00) + 0x10000;
buf[i] = cast(byte)(0xf0 + (c >> 18)); i++;
buf[i] = cast(byte)(0x80 + ((c >> 12) & 0x3f)); i++;
buf[i] = cast(byte)(0x80 + ((c >> 6) & 0x3f)); i++;
buf[i] = cast(byte)(0x80 + ((c ) & 0x3f)); i++;
j += 2;
case 0xdc00 <= str[j] && str[j] < 0xe000:
return "";
default:
if i+3 > len {
return "";
}
buf[i] = 0xe0 + cast(byte) (str[j] >> 12); i++;
buf[i] = 0x80 + cast(byte)((str[j] >> 6) & 0x3f); i++;
buf[i] = 0x80 + cast(byte)((str[j] ) & 0x3f); i++;
j++;
}
}
return cast(string)buf[..i];
}
arg_count: i32;
arg_list_ptr := win32.CommandLineToArgvW(win32.GetCommandLineW(), ^arg_count);
arg_list := new_slice(string, arg_count);
for _, i in arg_list {
arg_list[i] = alloc_ucs2_to_utf8((arg_list_ptr+i)^);
}
return arg_list;
}

View File

@@ -313,29 +313,16 @@ append_bits :: proc(buf: []byte, u: u64, base: int, is_signed: bool, bit_size: i
neg: bool;
u, neg = is_integer_negative(u, is_signed, bit_size);
if is_pow2(cast(i64)base) {
b := cast(u64)base;
m := cast(uint)b - 1;
for u >= b {
i--;
a[i] = digits[cast(uint)u & m];
u >>= b;
}
for b := cast(u64)base; u >= b; {
i--;
a[i] = digits[cast(uint)u];
} else {
b := cast(u64)base;
for u >= b {
i--;
q := u / b;
a[i] = digits[cast(uint)(u-q*b)];
u = q;
}
i--;
a[i] = digits[cast(uint)u];
q := u / b;
a[i] = digits[cast(uint)(u-q*b)];
u = q;
}
i--;
a[i] = digits[cast(uint)u];
if flags&Int_Flag.PREFIX != 0 {
ok := true;
match base {

View File

@@ -1,146 +1,100 @@
is_signed :: proc(info: ^Type_Info) -> bool {
if is_integer(info) {
i := union_cast(^Type_Info.Integer)info;
info = type_info_base(info);
if i, ok := union_cast(^Type_Info.Integer)info; ok {
return i.signed;
}
if is_float(info) {
if _, ok := union_cast(^Type_Info.Float)info; ok {
return true;
}
return false;
}
is_integer :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Integer: return true;
}
return false;
_, ok := union_cast(^Type_Info.Integer)type_info_base(info);
return ok;
}
is_float :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Float: return true;
}
return false;
_, ok := union_cast(^Type_Info.Float)type_info_base(info);
return ok;
}
is_complex :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
_, ok := union_cast(^Type_Info.Complex)type_info_base(info);
return ok;
}
is_any :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Any: return true;
}
return false;
_, ok := union_cast(^Type_Info.Any)type_info_base(info);
return ok;
}
is_string :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.String: return true;
}
return false;
_, ok := union_cast(^Type_Info.String)type_info_base(info);
return ok;
}
is_boolean :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Boolean: return true;
}
return false;
_, ok := union_cast(^Type_Info.Boolean)type_info_base(info);
return ok;
}
is_pointer :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Pointer: return true;
}
return false;
_, ok := union_cast(^Type_Info.Pointer)type_info_base(info);
return ok;
}
is_procedure :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Procedure: return true;
}
return false;
_, ok := union_cast(^Type_Info.Procedure)type_info_base(info);
return ok;
}
is_array :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Array: return true;
}
return false;
_, ok := union_cast(^Type_Info.Array)type_info_base(info);
return ok;
}
is_dynamic_array :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Dynamic_Array: return true;
}
return false;
_, ok := union_cast(^Type_Info.Dynamic_Array)type_info_base(info);
return ok;
}
is_dynamic_map :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Map: return i.count == 0;
}
return false;
_, ok := union_cast(^Type_Info.Map)type_info_base(info);
return ok;
}
is_slice :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Slice: return true;
}
return false;
_, ok := union_cast(^Type_Info.Slice)type_info_base(info);
return ok;
}
is_vector :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Vector: return true;
}
return false;
_, ok := union_cast(^Type_Info.Vector)type_info_base(info);
return ok;
}
is_tuple :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Tuple: return true;
}
return false;
_, ok := union_cast(^Type_Info.Tuple)type_info_base(info);
return ok;
}
is_struct :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Struct: return true;
}
return false;
_, ok := union_cast(^Type_Info.Struct)type_info_base(info);
return ok;
}
is_union :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Union: return true;
}
return false;
_, ok := union_cast(^Type_Info.Union)type_info_base(info);
return ok;
}
is_raw_union :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Raw_Union: return true;
}
return false;
_, ok := union_cast(^Type_Info.Raw_Union)type_info_base(info);
return ok;
}
is_enum :: proc(info: ^Type_Info) -> bool {
if info == nil { return false; }
match i in type_info_base(info) {
case Type_Info.Enum: return true;
}
return false;
_, ok := union_cast(^Type_Info.Enum)type_info_base(info);
return ok;
}

View File

@@ -1754,19 +1754,69 @@ bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type
if (v.kind != ExactValue_Float) {
return false;
}
if (out_value) *out_value = v;
switch (type->Basic.kind) {
// case Basic_f16:
case Basic_f32:
case Basic_f64:
// case Basic_f128:
if (out_value) *out_value = v;
return true;
case Basic_UntypedFloat:
return true;
}
} else if (is_type_pointer(type)) {
} else if (is_type_complex(type)) {
ExactValue v = exact_value_to_complex(in_value);
if (v.kind != ExactValue_Complex) {
return false;
}
switch (type->Basic.kind) {
case Basic_complex64:
case Basic_complex128: {
ExactValue real = exact_value_real(v);
ExactValue imag = exact_value_imag(v);
if (real.kind != ExactValue_Invalid &&
imag.kind != ExactValue_Invalid) {
if (out_value) *out_value = exact_binary_operator_value(Token_Add, real, exact_value_make_imag(imag));
return true;
}
} break;
case Basic_UntypedComplex:
return true;
}
return false;
} else if (is_type_quaternion(type)) {
ExactValue v = exact_value_to_quaternion(in_value);
if (v.kind != ExactValue_Quaternion) {
return false;
}
switch (type->Basic.kind) {
case Basic_quaternion128:
case Basic_quaternion256: {
ExactValue real = exact_value_real(v);
ExactValue imag = exact_value_imag(v);
ExactValue jmag = exact_value_jmag(v);
ExactValue kmag = exact_value_kmag(v);
if (real.kind != ExactValue_Invalid &&
imag.kind != ExactValue_Invalid &&
jmag.kind != ExactValue_Invalid &&
kmag.kind != ExactValue_Invalid) {
ExactValue ov = exact_binary_operator_value(Token_Add, real, exact_value_make_imag(imag));
ov = exact_binary_operator_value(Token_Add, ov, exact_value_make_jmag(jmag));
ov = exact_binary_operator_value(Token_Add, ov, exact_value_make_kmag(kmag));
if (out_value) *out_value = ov;
return true;
}
} break;
case Basic_UntypedQuaternion:
return true;
}
return false;
}else if (is_type_pointer(type)) {
if (in_value.kind == ExactValue_Pointer) {
return true;
}
@@ -2190,6 +2240,14 @@ bool check_is_castable_to(Checker *c, Operand *operand, Type *y) {
}
}
if (is_type_complex(src) && is_type_complex(dst)) {
return true;
}
if (is_type_quaternion(src) && is_type_quaternion(dst)) {
return true;
}
// Cast between pointers
if (is_type_pointer(src) && is_type_pointer(dst)) {
Type *s = base_type(type_deref(src));
@@ -2590,6 +2648,8 @@ void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level
break;
case Basic_UntypedInteger:
case Basic_UntypedFloat:
case Basic_UntypedComplex:
case Basic_UntypedQuaternion:
case Basic_UntypedRune:
if (!is_type_numeric(target_type)) {
operand->mode = Addressing_Invalid;
@@ -3568,6 +3628,279 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
operand->mode = Addressing_Value;
} break;
case BuiltinProc_complex: {
// complex :: proc(real, imag: float_type) -> complex_type
Operand x = *operand;
Operand y = {0};
// NOTE(bill): Invalid will be the default till fixed
operand->type = t_invalid;
operand->mode = Addressing_Invalid;
check_expr(c, &y, ce->args.e[1]);
if (y.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) return false;
convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) return false;
if (x.mode == Addressing_Constant &&
y.mode == Addressing_Constant) {
if (is_type_numeric(x.type) && exact_value_imag(x.value).value_float == 0) {
x.type = t_untyped_float;
}
if (is_type_numeric(y.type) && exact_value_imag(y.value).value_float == 0) {
y.type = t_untyped_float;
}
}
if (!are_types_identical(x.type, y.type)) {
gbString tx = type_to_string(x.type);
gbString ty = type_to_string(y.type);
error_node(call, "Mismatched types to `complex`, `%s` vs `%s`", tx, ty);
gb_string_free(ty);
gb_string_free(tx);
return false;
}
if (!is_type_float(x.type)) {
gbString s = type_to_string(x.type);
error_node(call, "Arguments have type `%s`, expected a floating point", s);
gb_string_free(s);
return false;
}
if (x.mode == Addressing_Constant && y.mode == Addressing_Constant) {
operand->value = exact_binary_operator_value(Token_Add, x.value, y.value);
operand->mode = Addressing_Constant;
} else {
operand->mode = Addressing_Value;
}
BasicKind kind = core_type(x.type)->Basic.kind;
switch (kind) {
case Basic_f32: operand->type = t_complex64; break;
case Basic_f64: operand->type = t_complex128; break;
case Basic_UntypedFloat: operand->type = t_untyped_complex; break;
default: GB_PANIC("Invalid type"); break;
}
} break;
case BuiltinProc_quaternion: {
// quaternion :: proc(real, imag, jmag, kmag: float_type) -> quaternion_type
Operand x = *operand;
Operand y = {0};
Operand z = {0};
Operand w = {0};
GB_PANIC("BuiltinProc_quaternion");
// NOTE(bill): Invalid will be the default till fixed
operand->type = t_invalid;
operand->mode = Addressing_Invalid;
check_expr(c, &y, ce->args.e[1]); if (y.mode == Addressing_Invalid) return false;
check_expr(c, &z, ce->args.e[2]); if (z.mode == Addressing_Invalid) return false;
check_expr(c, &w, ce->args.e[3]); if (w.mode == Addressing_Invalid) return false;
convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) return false;
convert_to_typed(c, &x, z.type, 0); if (x.mode == Addressing_Invalid) return false;
convert_to_typed(c, &x, w.type, 0); if (x.mode == Addressing_Invalid) return false;
convert_to_typed(c, &y, z.type, 0); if (y.mode == Addressing_Invalid) return false;
convert_to_typed(c, &y, w.type, 0); if (y.mode == Addressing_Invalid) return false;
convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) return false;
convert_to_typed(c, &z, y.type, 0); if (z.mode == Addressing_Invalid) return false;
convert_to_typed(c, &z, w.type, 0); if (z.mode == Addressing_Invalid) return false;
convert_to_typed(c, &z, x.type, 0); if (z.mode == Addressing_Invalid) return false;
convert_to_typed(c, &w, x.type, 0); if (w.mode == Addressing_Invalid) return false;
convert_to_typed(c, &w, y.type, 0); if (w.mode == Addressing_Invalid) return false;
convert_to_typed(c, &w, z.type, 0); if (w.mode == Addressing_Invalid) return false;
if (x.mode == Addressing_Constant &&
y.mode == Addressing_Constant &&
z.mode == Addressing_Constant &&
w.mode == Addressing_Constant) {
if (is_type_numeric(x.type) &&
exact_value_imag(x.value).value_float == 0 &&
exact_value_jmag(x.value).value_float == 0 &&
exact_value_kmag(x.value).value_float == 0) {
x.type = t_untyped_float;
}
if (is_type_numeric(y.type) &&
exact_value_imag(y.value).value_float == 0 &&
exact_value_jmag(y.value).value_float == 0 &&
exact_value_kmag(y.value).value_float == 0) {
y.type = t_untyped_float;
}
if (is_type_numeric(z.type) &&
exact_value_imag(z.value).value_float == 0 &&
exact_value_jmag(z.value).value_float == 0 &&
exact_value_kmag(z.value).value_float == 0) {
z.type = t_untyped_float;
}
if (is_type_numeric(w.type) &&
exact_value_imag(w.value).value_float == 0 &&
exact_value_jmag(w.value).value_float == 0 &&
exact_value_kmag(w.value).value_float == 0) {
w.type = t_untyped_float;
}
}
if (!are_types_identical(x.type, y.type)) {
gbString tx = type_to_string(x.type);
gbString ty = type_to_string(y.type);
gbString tz = type_to_string(z.type);
gbString tw = type_to_string(w.type);
error_node(call, "Mismatched types to `complex`, `%s`, `%s` `%s`, `%s`", tx, ty, tz, tw);
gb_string_free(tw);
gb_string_free(tz);
gb_string_free(ty);
gb_string_free(tx);
return false;
}
if (!is_type_float(x.type)) {
gbString s = type_to_string(x.type);
error_node(call, "Arguments have type `%s`, expected a floating point", s);
gb_string_free(s);
return false;
}
if (x.mode == Addressing_Constant &&
y.mode == Addressing_Constant &&
z.mode == Addressing_Constant &&
w.mode == Addressing_Constant) {
ExactValue v = exact_binary_operator_value(Token_Add, x.value, y.value);
v = exact_binary_operator_value(Token_Add, v, z.value);
v = exact_binary_operator_value(Token_Add, v, w.value);
operand->value = v;
operand->mode = Addressing_Constant;
} else {
operand->mode = Addressing_Value;
}
BasicKind kind = core_type(x.type)->Basic.kind;
switch (kind) {
case Basic_complex64: x.type = t_f32; break;
case Basic_complex128: x.type = t_f64; break;
case Basic_UntypedComplex: x.type = t_untyped_float; break;
case Basic_quaternion128: x.type = t_f32; break;
case Basic_quaternion256: x.type = t_f64; break;
case Basic_UntypedQuaternion: x.type = t_untyped_float; break;
default: GB_PANIC("Invalid type"); break;
}
} break;
case BuiltinProc_real:
case BuiltinProc_imag:
case BuiltinProc_jmag:
case BuiltinProc_kmag: {
// real :: proc(x: type) -> float_type
// imag :: proc(x: type) -> float_type
// jmag :: proc(x: type) -> float_type
// kmag :: proc(x: type) -> float_type
Operand *x = operand;
if (is_type_untyped(x->type)) {
if (x->mode == Addressing_Constant) {
if (is_type_numeric(x->type)) {
if (id == BuiltinProc_jmag ||
id == BuiltinProc_kmag) {
x->type = t_untyped_quaternion;
} else {
x->type = t_untyped_complex;
}
}
} else {
if (id == BuiltinProc_jmag ||
id == BuiltinProc_kmag) {
convert_to_typed(c, x, t_quaternion256, 0);
} else {
convert_to_typed(c, x, t_complex128, 0);
}
if (x->mode == Addressing_Invalid) {
return false;
}
}
}
if (id == BuiltinProc_jmag ||
id == BuiltinProc_kmag) {
if (!is_type_quaternion(x->type)) {
gbString s = type_to_string(x->type);
error_node(call, "Argument has type `%s`, expected a complex type", s);
gb_string_free(s);
return false;
}
} else {
if (!is_type_complex(x->type) && !is_type_quaternion(x->type)) {
gbString s = type_to_string(x->type);
error_node(call, "Argument has type `%s`, expected a complex or quaternion type", s);
gb_string_free(s);
return false;
}
}
if (x->mode == Addressing_Constant) {
switch (id) {
case BuiltinProc_real: x->value = exact_value_real(x->value); break;
case BuiltinProc_imag: x->value = exact_value_imag(x->value); break;
case BuiltinProc_jmag: x->value = exact_value_jmag(x->value); break;
case BuiltinProc_kmag: x->value = exact_value_kmag(x->value); break;
}
} else {
x->mode = Addressing_Value;
}
BasicKind kind = core_type(x->type)->Basic.kind;
switch (kind) {
case Basic_complex64: x->type = t_f32; break;
case Basic_complex128: x->type = t_f64; break;
case Basic_UntypedComplex: x->type = t_untyped_float; break;
case Basic_quaternion128: x->type = t_f32; break;
case Basic_quaternion256: x->type = t_f64; break;
case Basic_UntypedQuaternion: x->type = t_untyped_float; break;
default: GB_PANIC("Invalid type"); break;
}
} break;
case BuiltinProc_conj: {
// conj :: proc(x: type) -> type
Operand *x = operand;
if (is_type_complex(x->type)) {
if (x->mode == Addressing_Constant) {
ExactValue v = exact_value_to_complex(x->value);
f64 r = v.value_complex.real;
f64 i = v.value_complex.imag;
x->value = exact_value_complex(r, i);
x->mode = Addressing_Constant;
} else {
x->mode = Addressing_Value;
}
} else if (is_type_quaternion(x->type)) {
if (x->mode == Addressing_Constant) {
ExactValue v = exact_value_to_quaternion(x->value);
f64 r = v.value_quaternion.real;
f64 i = v.value_quaternion.imag;
f64 j = v.value_quaternion.jmag;
f64 k = v.value_quaternion.kmag;
x->value = exact_value_quaternion(r, i, j, k);
x->mode = Addressing_Constant;
} else {
x->mode = Addressing_Value;
}
} else {
gbString s = type_to_string(x->type);
error_node(call, "Expected a complex or quaternion, got `%s`", s);
gb_string_free(s);
return false;
}
} break;
case BuiltinProc_slice_ptr: {
// slice_ptr :: proc(a: ^T, len: int) -> []T
// slice_ptr :: proc(a: ^T, len, cap: int) -> []T
@@ -3575,16 +3908,13 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a pointer to `slice_ptr`, got `%s`",
type_str);
error_node(call, "Expected a pointer to `slice_ptr`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
if (ptr_type == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
error_node(call, "`rawptr` cannot have pointer arithmetic");
return false;
}
@@ -3629,11 +3959,11 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
} break;
case BuiltinProc_min: {
// min :: proc(a, b: comparable) -> comparable
// min :: proc(a, b: ordered) -> ordered
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call, "Expected a comparable numeric type to `min`, got `%s`", type_str);
error_node(call, "Expected a ordered numeric type to `min`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
@@ -3645,10 +3975,10 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error_node(call,
"Expected a comparable numeric type to `min`, got `%s`",
"Expected a ordered numeric type to `min`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
@@ -3695,12 +4025,12 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
} break;
case BuiltinProc_max: {
// min :: proc(a, b: comparable) -> comparable
// min :: proc(a, b: ordered) -> ordered
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric or string type to `max`, got `%s`",
"Expected a ordered numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
@@ -3713,10 +4043,10 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error_node(call,
"Expected a comparable numeric or string type to `max`, got `%s`",
"Expected a ordered numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
@@ -3764,12 +4094,9 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
case BuiltinProc_abs: {
// abs :: proc(n: numeric) -> numeric
Type *type = base_type(operand->type);
if (!is_type_numeric(type)) {
if (!is_type_numeric(operand->type) && !is_type_vector(operand->type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a numeric type to `abs`, got `%s`",
type_str);
error_node(call, "Expected a numeric type to `abs`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
@@ -3782,6 +4109,18 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
case ExactValue_Float:
operand->value.value_float = gb_abs(operand->value.value_float);
break;
case ExactValue_Complex: {
f64 r = operand->value.value_complex.real;
f64 i = operand->value.value_complex.imag;
operand->value = exact_value_float(gb_sqrt(r*r + i*i));
} break;
case ExactValue_Quaternion: {
f64 r = operand->value.value_complex.real;
f64 i = operand->value.value_complex.imag;
f64 j = operand->value.value_complex.imag;
f64 k = operand->value.value_complex.imag;
operand->value = exact_value_float(gb_sqrt(r*r + i*i + j*j + k*k));
} break;
default:
GB_PANIC("Invalid numeric constant");
break;
@@ -3790,17 +4129,20 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
operand->mode = Addressing_Value;
}
operand->type = type;
if (is_type_complex(operand->type)) {
operand->type = base_complex_elem_type(operand->type);
} else if (is_type_quaternion(operand->type)) {
operand->type = base_quaternion_elem_type(operand->type);
}
GB_ASSERT(!is_type_complex(operand->type) && !is_type_quaternion(operand->type));
} break;
case BuiltinProc_clamp: {
// clamp :: proc(a, min, max: comparable) -> comparable
// clamp :: proc(a, min, max: ordered) -> ordered
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
@@ -3815,11 +4157,9 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
if (y.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) {
if (!is_type_ordered(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) {
gbString type_str = type_to_string(y.type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
@@ -3828,11 +4168,9 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
if (z.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) {
if (!is_type_ordered(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) {
gbString type_str = type_to_string(z.type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
@@ -4407,6 +4745,16 @@ ExprKind check_expr_base_internal(Checker *c, Operand *o, AstNode *node, Type *t
case Token_Float: t = t_untyped_float; break;
case Token_String: t = t_untyped_string; break;
case Token_Rune: t = t_untyped_rune; break;
case Token_Imag: {
String s = bl->string;
Rune r = s.text[s.len-1];
switch (r) {
case 'i': t = t_untyped_complex; break;
case 'j': case 'k':
t = t_untyped_quaternion;
break;
}
} break;
default: GB_PANIC("Unknown literal"); break;
}
o->mode = Addressing_Constant;

View File

@@ -52,6 +52,14 @@ typedef enum BuiltinProcId {
BuiltinProc_swizzle,
BuiltinProc_complex,
BuiltinProc_quaternion,
BuiltinProc_real,
BuiltinProc_imag,
BuiltinProc_jmag,
BuiltinProc_kmag,
BuiltinProc_conj,
// BuiltinProc_ptr_offset,
// BuiltinProc_ptr_sub,
BuiltinProc_slice_ptr,
@@ -87,8 +95,8 @@ gb_global BuiltinProc builtin_procs[BuiltinProc_Count] = {
{STR_LIT("type_info"), 1, false, Expr_Expr},
{STR_LIT("type_info_of_val"), 1, false, Expr_Expr},
{STR_LIT("compile_assert"), 1, false, Expr_Stmt},
{STR_LIT("assert"), 1, false, Expr_Stmt},
{STR_LIT("compile_assert"), 1, false, Expr_Expr},
{STR_LIT("assert"), 1, false, Expr_Expr},
{STR_LIT("panic"), 1, false, Expr_Stmt},
{STR_LIT("copy"), 2, false, Expr_Expr},
@@ -96,6 +104,14 @@ gb_global BuiltinProc builtin_procs[BuiltinProc_Count] = {
{STR_LIT("swizzle"), 1, true, Expr_Expr},
{STR_LIT("complex"), 2, false, Expr_Expr},
{STR_LIT("quaternion"), 4, false, Expr_Expr},
{STR_LIT("real"), 1, false, Expr_Expr},
{STR_LIT("imag"), 1, false, Expr_Expr},
{STR_LIT("jmag"), 1, false, Expr_Expr},
{STR_LIT("kmag"), 1, false, Expr_Expr},
{STR_LIT("conj"), 1, false, Expr_Expr},
// {STR_LIT("ptr_offset"), 2, false, Expr_Expr},
// {STR_LIT("ptr_sub"), 2, false, Expr_Expr},
{STR_LIT("slice_ptr"), 2, true, Expr_Expr},
@@ -940,6 +956,24 @@ void add_type_info_type(Checker *c, Type *t) {
add_type_info_type(c, t_type_info_ptr);
add_type_info_type(c, t_rawptr);
break;
case Basic_complex64:
add_type_info_type(c, t_type_info_float);
add_type_info_type(c, t_f32);
break;
case Basic_complex128:
add_type_info_type(c, t_type_info_float);
add_type_info_type(c, t_f64);
break;
case Basic_quaternion128:
add_type_info_type(c, t_type_info_float);
add_type_info_type(c, t_f32);
break;
case Basic_quaternion256:
add_type_info_type(c, t_type_info_float);
add_type_info_type(c, t_f64);
break;
}
} break;
@@ -1128,31 +1162,35 @@ void init_preload(Checker *c) {
if (record->variant_count != 19) {
if (record->variant_count != 21) {
compiler_error("Invalid `Type_Info` layout");
}
t_type_info_named = record->variants[ 1]->type;
t_type_info_integer = record->variants[ 2]->type;
t_type_info_float = record->variants[ 3]->type;
t_type_info_string = record->variants[ 4]->type;
t_type_info_boolean = record->variants[ 5]->type;
t_type_info_any = record->variants[ 6]->type;
t_type_info_pointer = record->variants[ 7]->type;
t_type_info_procedure = record->variants[ 8]->type;
t_type_info_array = record->variants[ 9]->type;
t_type_info_dynamic_array = record->variants[10]->type;
t_type_info_slice = record->variants[11]->type;
t_type_info_vector = record->variants[12]->type;
t_type_info_tuple = record->variants[13]->type;
t_type_info_struct = record->variants[14]->type;
t_type_info_raw_union = record->variants[15]->type;
t_type_info_union = record->variants[16]->type;
t_type_info_enum = record->variants[17]->type;
t_type_info_map = record->variants[18]->type;
t_type_info_complex = record->variants[ 4]->type;
t_type_info_quaternion = record->variants[ 5]->type;
t_type_info_string = record->variants[ 6]->type;
t_type_info_boolean = record->variants[ 7]->type;
t_type_info_any = record->variants[ 8]->type;
t_type_info_pointer = record->variants[ 9]->type;
t_type_info_procedure = record->variants[10]->type;
t_type_info_array = record->variants[11]->type;
t_type_info_dynamic_array = record->variants[12]->type;
t_type_info_slice = record->variants[13]->type;
t_type_info_vector = record->variants[14]->type;
t_type_info_tuple = record->variants[15]->type;
t_type_info_struct = record->variants[16]->type;
t_type_info_raw_union = record->variants[17]->type;
t_type_info_union = record->variants[18]->type;
t_type_info_enum = record->variants[19]->type;
t_type_info_map = record->variants[20]->type;
t_type_info_named_ptr = make_type_pointer(c->allocator, t_type_info_named);
t_type_info_integer_ptr = make_type_pointer(c->allocator, t_type_info_integer);
t_type_info_float_ptr = make_type_pointer(c->allocator, t_type_info_float);
t_type_info_complex_ptr = make_type_pointer(c->allocator, t_type_info_complex);
t_type_info_quaternion_ptr = make_type_pointer(c->allocator, t_type_info_quaternion);
t_type_info_string_ptr = make_type_pointer(c->allocator, t_type_info_string);
t_type_info_boolean_ptr = make_type_pointer(c->allocator, t_type_info_boolean);
t_type_info_any_ptr = make_type_pointer(c->allocator, t_type_info_any);

View File

@@ -2,6 +2,8 @@
#define GB_IMPLEMENTATION
#include "gb/gb.h"
#include <math.h>
gbAllocator heap_allocator(void) {
return gb_heap_allocator();
}
@@ -104,6 +106,10 @@ i16 f32_to_f16(f32 value) {
}
}
f64 gb_sqrt(f64 x) {
return sqrt(x);
}
#define for_array(index_, array_) for (isize index_ = 0; index_ < (array_).count; index_++)

View File

@@ -5,6 +5,14 @@
typedef struct AstNode AstNode;
typedef struct Complex128 {
f64 real, imag;
} Complex128;
typedef struct Quaternion256 {
f64 real, imag, jmag, kmag;
} Quaternion256;
typedef enum ExactValueKind {
ExactValue_Invalid,
@@ -12,6 +20,8 @@ typedef enum ExactValueKind {
ExactValue_String,
ExactValue_Integer,
ExactValue_Float,
ExactValue_Complex,
ExactValue_Quaternion,
ExactValue_Pointer,
ExactValue_Compound, // TODO(bill): Is this good enough?
@@ -21,12 +31,14 @@ typedef enum ExactValueKind {
typedef struct ExactValue {
ExactValueKind kind;
union {
bool value_bool;
String value_string;
i64 value_integer; // NOTE(bill): This must be an integer and not a pointer
f64 value_float;
i64 value_pointer;
AstNode *value_compound;
bool value_bool;
String value_string;
i64 value_integer; // NOTE(bill): This must be an integer and not a pointer
f64 value_float;
i64 value_pointer;
Complex128 value_complex;
Quaternion256 value_quaternion;
AstNode * value_compound;
};
} ExactValue;
@@ -66,6 +78,23 @@ ExactValue exact_value_float(f64 f) {
return result;
}
ExactValue exact_value_complex(f64 real, f64 imag) {
ExactValue result = {ExactValue_Complex};
result.value_complex.real = real;
result.value_complex.imag = imag;
return result;
}
ExactValue exact_value_quaternion(f64 real, f64 imag, f64 jmag, f64 kmag) {
ExactValue result = {ExactValue_Quaternion};
result.value_quaternion.real = real;
result.value_quaternion.imag = imag;
result.value_quaternion.jmag = jmag;
result.value_quaternion.kmag = kmag;
return result;
}
ExactValue exact_value_pointer(i64 ptr) {
ExactValue result = {ExactValue_Pointer};
result.value_pointer = ptr;
@@ -113,9 +142,7 @@ ExactValue exact_value_integer_from_string(String string) {
return exact_value_integer(result);
}
ExactValue exact_value_float_from_string(String string) {
f64 float_from_string(String string) {
isize i = 0;
u8 *str = string.text;
isize len = string.len;
@@ -190,8 +217,11 @@ ExactValue exact_value_float_from_string(String string) {
while (exp > 0) { scale *= 10.0; exp -= 1; }
}
f64 result = sign * (frac ? (value / scale) : (value * scale));
return exact_value_float(result);
return sign * (frac ? (value / scale) : (value * scale));
}
ExactValue exact_value_float_from_string(String string) {
return exact_value_float(float_from_string(string));
}
@@ -200,6 +230,18 @@ ExactValue exact_value_from_basic_literal(Token token) {
case Token_String: return exact_value_string(token.string);
case Token_Integer: return exact_value_integer_from_string(token.string);
case Token_Float: return exact_value_float_from_string(token.string);
case Token_Imag: {
String str = token.string;
Rune last_rune = cast(Rune)str.text[str.len-1];
str.len--; // Ignore the `i|j|k`
f64 imag = float_from_string(str);
switch (last_rune) {
case 'i': return exact_value_complex(0, imag);
case 'j': return exact_value_quaternion(0, 0, imag, 0);
case 'k': return exact_value_quaternion(0, 0, 0, imag);
}
}
case Token_Rune: {
Rune r = GB_RUNE_INVALID;
gb_utf8_decode(token.string.text, token.string.len, &r);
@@ -245,6 +287,128 @@ ExactValue exact_value_to_float(ExactValue v) {
return r;
}
ExactValue exact_value_to_complex(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_complex(cast(i64)v.value_integer, 0);
case ExactValue_Float:
return exact_value_complex(v.value_float, 0);
case ExactValue_Complex:
return v;
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_to_quaternion(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_quaternion(cast(i64)v.value_integer, 0, 0, 0);
case ExactValue_Float:
return exact_value_quaternion(v.value_float, 0, 0, 0);
case ExactValue_Complex:
return exact_value_quaternion(v.value_complex.real, v.value_complex.imag, 0, 0);
case ExactValue_Quaternion:
return v;
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_real(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
return v;
case ExactValue_Complex:
return exact_value_float(v.value_complex.real);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion.real);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_imag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
return exact_value_integer(0);
case ExactValue_Complex:
return exact_value_float(v.value_complex.imag);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion.imag);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_jmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
case ExactValue_Complex:
return exact_value_integer(0);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion.jmag);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_kmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
case ExactValue_Float:
case ExactValue_Complex:
return exact_value_integer(0);
case ExactValue_Quaternion:
return exact_value_float(v.value_quaternion.kmag);
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_make_imag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_complex(0, exact_value_to_float(v).value_float);
case ExactValue_Float:
return exact_value_complex(0, v.value_float);
default:
GB_PANIC("Expected an integer or float type for `exact_value_make_imag`");
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_make_jmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_quaternion(0, 0, exact_value_to_float(v).value_float, 0);
case ExactValue_Float:
return exact_value_quaternion(0, 0, v.value_float, 0);
default:
GB_PANIC("Expected an integer or float type for `exact_value_make_jmag`");
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_value_make_kmag(ExactValue v) {
switch (v.kind) {
case ExactValue_Integer:
return exact_value_quaternion(0, 0, 0, exact_value_to_float(v).value_float);
case ExactValue_Float:
return exact_value_quaternion(0, 0, 0, v.value_float);
default:
GB_PANIC("Expected an integer or float type for `exact_value_make_kmag`");
}
ExactValue r = {ExactValue_Invalid};
return r;
}
ExactValue exact_unary_operator_value(TokenKind op, ExactValue v, i32 precision) {
switch (op) {
@@ -253,6 +417,8 @@ ExactValue exact_unary_operator_value(TokenKind op, ExactValue v, i32 precision)
case ExactValue_Invalid:
case ExactValue_Integer:
case ExactValue_Float:
case ExactValue_Complex:
case ExactValue_Quaternion:
return v;
}
} break;
@@ -271,6 +437,18 @@ ExactValue exact_unary_operator_value(TokenKind op, ExactValue v, i32 precision)
i.value_float = -i.value_float;
return i;
}
case ExactValue_Complex: {
f64 real = v.value_complex.real;
f64 imag = v.value_complex.imag;
return exact_value_complex(-real, -imag);
}
case ExactValue_Quaternion: {
f64 real = v.value_quaternion.real;
f64 imag = v.value_quaternion.imag;
f64 jmag = v.value_quaternion.jmag;
f64 kmag = v.value_quaternion.kmag;
return exact_value_quaternion(-real, -imag, -jmag, -kmag);
}
}
} break;
@@ -324,8 +502,12 @@ i32 exact_value_order(ExactValue v) {
return 2;
case ExactValue_Float:
return 3;
case ExactValue_Pointer:
case ExactValue_Complex:
return 4;
case ExactValue_Quaternion:
return 5;
case ExactValue_Pointer:
return 6;
default:
GB_PANIC("How'd you get here? Invalid Value.kind");
@@ -346,6 +528,8 @@ void match_exact_values(ExactValue *x, ExactValue *y) {
case ExactValue_Bool:
case ExactValue_String:
case ExactValue_Complex:
case ExactValue_Quaternion:
return;
case ExactValue_Integer:
@@ -356,16 +540,30 @@ void match_exact_values(ExactValue *x, ExactValue *y) {
// TODO(bill): Is this good enough?
*x = exact_value_float(cast(f64)x->value_integer);
return;
case ExactValue_Complex:
*x = exact_value_complex(cast(f64)x->value_integer, 0);
return;
case ExactValue_Quaternion:
*x = exact_value_quaternion(cast(f64)x->value_integer, 0, 0, 0);
return;
}
break;
case ExactValue_Float:
if (y->kind == ExactValue_Float)
switch (y->kind) {
case ExactValue_Float:
return;
case ExactValue_Complex:
*x = exact_value_to_complex(*x);
return;
case ExactValue_Quaternion:
*x = exact_value_to_quaternion(*x);
return;
}
break;
}
compiler_error("How'd you get here? Invalid ExactValueKind");
compiler_error("match_exact_values: How'd you get here? Invalid ExactValueKind %d", x->kind);
}
// TODO(bill): Allow for pointer arithmetic? Or are pointer slices good enough?
@@ -420,6 +618,84 @@ ExactValue exact_binary_operator_value(TokenKind op, ExactValue x, ExactValue y)
default: goto error;
}
} break;
case ExactValue_Complex: {
y = exact_value_to_complex(y);
f64 a = x.value_complex.real;
f64 b = x.value_complex.imag;
f64 c = y.value_complex.real;
f64 d = y.value_complex.imag;
f64 real = 0;
f64 imag = 0;
switch (op) {
case Token_Add:
real = a + c;
imag = b + d;
break;
case Token_Sub:
real = a - c;
imag = b - d;
break;
case Token_Mul:
real = (a*c - b*d);
imag = (b*c + a*d);
break;
case Token_Quo: {
f64 s = c*c + d*d;
real = (a*c + b*d)/s;
imag = (b*c - a*d)/s;
} break;
default: goto error;
}
return exact_value_complex(real, imag);
} break;
case ExactValue_Quaternion: {
y = exact_value_to_quaternion(y);
f64 a = x.value_quaternion.real;
f64 b = x.value_quaternion.imag;
f64 c = x.value_quaternion.jmag;
f64 d = x.value_quaternion.kmag;
f64 e = x.value_quaternion.real;
f64 f = x.value_quaternion.imag;
f64 g = x.value_quaternion.jmag;
f64 h = x.value_quaternion.kmag;
f64 real = 0;
f64 imag = 0;
f64 jmag = 0;
f64 kmag = 0;
switch (op) {
case Token_Add:
real = a + e;
imag = b + f;
jmag = c + g;
kmag = d + h;
break;
case Token_Sub:
real = a - e;
imag = b - f;
jmag = c - g;
kmag = d - h;
break;
case Token_Mul:
real = a*f + b*e + c*h - d*g;
imag = a*g - b*h + c*e + d*f;
jmag = a*h + b*g - c*f + d*e;
kmag = a*e - b*f - c*g - d*h;
break;
case Token_Quo: {
f64 s = e*e + f*f + g*g + h*h;
real = (+a*e + b*f + c*g + d*h)/s;
imag = (-a*f + b*e - c*h + d*h)/s;
jmag = (-a*g + b*h + c*e - d*f)/s;
kmag = (-a*h - b*g + c*f + d*e)/s;
} break;
default: goto error;
}
return exact_value_quaternion(real, imag, jmag, kmag);
} break;
}
error:
@@ -480,6 +756,34 @@ bool compare_exact_values(TokenKind op, ExactValue x, ExactValue y) {
}
} break;
case ExactValue_Complex: {
f64 a = x.value_complex.real;
f64 b = x.value_complex.imag;
f64 c = y.value_complex.real;
f64 d = y.value_complex.imag;
switch (op) {
case Token_CmpEq: return cmp_f64(a, c) == 0 && cmp_f64(b, d) == 0;
case Token_NotEq: return cmp_f64(a, c) != 0 || cmp_f64(b, d) != 0;
}
} break;
case ExactValue_Quaternion: {
f64 a = x.value_quaternion.real;
f64 b = x.value_quaternion.imag;
f64 c = x.value_quaternion.jmag;
f64 d = x.value_quaternion.kmag;
f64 e = y.value_quaternion.real;
f64 f = y.value_quaternion.imag;
f64 g = y.value_quaternion.jmag;
f64 h = y.value_quaternion.kmag;
switch (op) {
case Token_CmpEq: return cmp_f64(a, e) == 0 && cmp_f64(b, f) == 0 && cmp_f64(c, g) == 0 && cmp_f64(d, h) == 0;
case Token_NotEq: return cmp_f64(a, e) != 0 || cmp_f64(b, f) != 0 || cmp_f64(c, g) != 0 || cmp_f64(d, h) != 0;
}
} break;
case ExactValue_String: {
String a = x.value_string;
String b = y.value_string;

364
src/ir.c
View File

@@ -1351,6 +1351,7 @@ irValue *ir_emit_store(irProcedure *p, irValue *address, irValue *value) {
return ir_emit(p, ir_instr_store(p, address, value));
}
irValue *ir_emit_load(irProcedure *p, irValue *address) {
GB_ASSERT(address != NULL);
return ir_emit(p, ir_instr_load(p, address));
}
irValue *ir_emit_select(irProcedure *p, irValue *cond, irValue *t, irValue *f) {
@@ -1653,6 +1654,7 @@ irValue *ir_addr_load(irProcedure *proc, irAddr addr) {
}
irValue *ir_emit_array_epi(irProcedure *proc, irValue *s, i32 index);
irValue *ir_emit_struct_ev(irProcedure *proc, irValue *s, i32 index);
irValue *ir_emit_ptr_offset(irProcedure *proc, irValue *ptr, irValue *offset) {
offset = ir_emit_conv(proc, offset, t_int);
@@ -1716,6 +1718,180 @@ irValue *ir_emit_arith(irProcedure *proc, TokenKind op, irValue *left, irValue *
return ir_emit_load(proc, res);
}
if (is_type_complex(t_left)) {
ir_emit_comment(proc, str_lit("complex.arith.begin"));
Type *ft = base_complex_elem_type(t_left);
irValue *res = ir_add_local_generated(proc, type);
irValue *a = ir_emit_struct_ev(proc, left, 0);
irValue *b = ir_emit_struct_ev(proc, left, 1);
irValue *c = ir_emit_struct_ev(proc, right, 0);
irValue *d = ir_emit_struct_ev(proc, right, 1);
irValue *real = NULL;
irValue *imag = NULL;
switch (op) {
case Token_Add:
real = ir_emit_arith(proc, Token_Add, a, c, ft);
imag = ir_emit_arith(proc, Token_Add, b, d, ft);
break;
case Token_Sub:
real = ir_emit_arith(proc, Token_Sub, a, c, ft);
imag = ir_emit_arith(proc, Token_Sub, b, d, ft);
break;
case Token_Mul: {
irValue *x = ir_emit_arith(proc, Token_Mul, a, c, ft);
irValue *y = ir_emit_arith(proc, Token_Mul, b, d, ft);
real = ir_emit_arith(proc, Token_Sub, x, y, ft);
irValue *z = ir_emit_arith(proc, Token_Mul, b, c, ft);
irValue *w = ir_emit_arith(proc, Token_Mul, a, d, ft);
imag = ir_emit_arith(proc, Token_Add, z, w, ft);
} break;
case Token_Quo: {
irValue *s1 = ir_emit_arith(proc, Token_Mul, c, c, ft);
irValue *s2 = ir_emit_arith(proc, Token_Mul, d, d, ft);
irValue *s = ir_emit_arith(proc, Token_Add, s1, s2, ft);
irValue *x = ir_emit_arith(proc, Token_Mul, a, c, ft);
irValue *y = ir_emit_arith(proc, Token_Mul, b, d, ft);
real = ir_emit_arith(proc, Token_Add, x, y, ft);
real = ir_emit_arith(proc, Token_Quo, real, s, ft);
irValue *z = ir_emit_arith(proc, Token_Mul, b, c, ft);
irValue *w = ir_emit_arith(proc, Token_Mul, a, d, ft);
imag = ir_emit_arith(proc, Token_Sub, z, w, ft);
imag = ir_emit_arith(proc, Token_Quo, imag, s, ft);
} break;
}
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 1), imag);
ir_emit_comment(proc, str_lit("complex.end.begin"));
return ir_emit_load(proc, res);
} else if (is_type_quaternion(t_left)) {
ir_emit_comment(proc, str_lit("quaternion.arith.begin"));
Type *ft = base_quaternion_elem_type(t_left);
irValue *res = ir_add_local_generated(proc, type);
irValue *a = ir_emit_struct_ev(proc, left, 0);
irValue *b = ir_emit_struct_ev(proc, left, 1);
irValue *c = ir_emit_struct_ev(proc, left, 2);
irValue *d = ir_emit_struct_ev(proc, left, 3);
irValue *e = ir_emit_struct_ev(proc, right, 0);
irValue *f = ir_emit_struct_ev(proc, right, 1);
irValue *g = ir_emit_struct_ev(proc, right, 2);
irValue *h = ir_emit_struct_ev(proc, right, 3);
irValue *real = NULL;
irValue *imag = NULL;
irValue *jmag = NULL;
irValue *kmag = NULL;
switch (op) {
case Token_Add:
real = ir_emit_arith(proc, Token_Add, a, e, ft);
imag = ir_emit_arith(proc, Token_Add, b, f, ft);
jmag = ir_emit_arith(proc, Token_Add, c, g, ft);
kmag = ir_emit_arith(proc, Token_Add, d, h, ft);
break;
case Token_Sub:
real = ir_emit_arith(proc, Token_Sub, a, e, ft);
imag = ir_emit_arith(proc, Token_Sub, b, f, ft);
jmag = ir_emit_arith(proc, Token_Sub, c, g, ft);
kmag = ir_emit_arith(proc, Token_Sub, d, h, ft);
break;
case Token_Mul: {
irValue *r0 = ir_emit_arith(proc, Token_Mul, a, e, ft);
irValue *r1 = ir_emit_arith(proc, Token_Mul, b, f, ft);
irValue *r2 = ir_emit_arith(proc, Token_Mul, c, h, ft);
irValue *r3 = ir_emit_arith(proc, Token_Mul, d, g, ft);
real = ir_emit_arith(proc, Token_Add, r0, r1, ft);
real = ir_emit_arith(proc, Token_Add, real, r2, ft);
real = ir_emit_arith(proc, Token_Add, real, r3, ft);
irValue *i0 = ir_emit_arith(proc, Token_Mul, a, g, ft);
irValue *i1 = ir_emit_arith(proc, Token_Mul, b, h, ft);
irValue *i2 = ir_emit_arith(proc, Token_Mul, c, e, ft);
irValue *i3 = ir_emit_arith(proc, Token_Mul, d, f, ft);
imag = ir_emit_arith(proc, Token_Sub, i0, i1, ft);
imag = ir_emit_arith(proc, Token_Add, imag, i2, ft);
imag = ir_emit_arith(proc, Token_Add, imag, i3, ft);
irValue *j0 = ir_emit_arith(proc, Token_Mul, a, h, ft);
irValue *j1 = ir_emit_arith(proc, Token_Mul, b, g, ft);
irValue *j2 = ir_emit_arith(proc, Token_Mul, c, f, ft);
irValue *j3 = ir_emit_arith(proc, Token_Mul, d, e, ft);
jmag = ir_emit_arith(proc, Token_Add, j0, j1, ft);
jmag = ir_emit_arith(proc, Token_Sub, imag, j2, ft);
jmag = ir_emit_arith(proc, Token_Sub, imag, j3, ft);
irValue *k0 = ir_emit_arith(proc, Token_Mul, a, e, ft);
irValue *k1 = ir_emit_arith(proc, Token_Mul, b, f, ft);
irValue *k2 = ir_emit_arith(proc, Token_Mul, c, g, ft);
irValue *k3 = ir_emit_arith(proc, Token_Mul, d, h, ft);
kmag = ir_emit_arith(proc, Token_Sub, j0, j1, ft);
kmag = ir_emit_arith(proc, Token_Sub, imag, j2, ft);
kmag = ir_emit_arith(proc, Token_Sub, imag, j3, ft);
} break;
case Token_Quo: {
irValue *s0 = ir_emit_arith(proc, Token_Mul, e, e, ft);
irValue *s1 = ir_emit_arith(proc, Token_Mul, f, f, ft);
irValue *s2 = ir_emit_arith(proc, Token_Mul, g, g, ft);
irValue *s3 = ir_emit_arith(proc, Token_Mul, h, h, ft);
irValue *s = ir_emit_arith(proc, Token_Add, s0, s1, ft);
s = ir_emit_arith(proc, Token_Add, s, s2, ft);
s = ir_emit_arith(proc, Token_Add, s, s3, ft);
irValue *r0 = ir_emit_arith(proc, Token_Mul, a, e, ft);
irValue *r1 = ir_emit_arith(proc, Token_Mul, b, f, ft);
irValue *r2 = ir_emit_arith(proc, Token_Mul, c, h, ft);
irValue *r3 = ir_emit_arith(proc, Token_Mul, d, g, ft);
real = ir_emit_arith(proc, Token_Add, r0, r1, ft);
real = ir_emit_arith(proc, Token_Add, real, r2, ft);
real = ir_emit_arith(proc, Token_Add, real, r3, ft);
real = ir_emit_arith(proc, Token_Quo, real, s, ft);
irValue *i0 = ir_emit_arith(proc, Token_Mul, a, f, ft);
irValue *i1 = ir_emit_arith(proc, Token_Mul, b, e, ft);
irValue *i2 = ir_emit_arith(proc, Token_Mul, c, h, ft);
irValue *i3 = ir_emit_arith(proc, Token_Mul, d, g, ft);
imag = ir_emit_arith(proc, Token_Sub, i1, i0, ft);
imag = ir_emit_arith(proc, Token_Sub, imag, i2, ft);
imag = ir_emit_arith(proc, Token_Add, imag, i3, ft);
imag = ir_emit_arith(proc, Token_Quo, imag, s, ft);
irValue *j0 = ir_emit_arith(proc, Token_Mul, a, g, ft);
irValue *j1 = ir_emit_arith(proc, Token_Mul, b, h, ft);
irValue *j2 = ir_emit_arith(proc, Token_Mul, c, e, ft);
irValue *j3 = ir_emit_arith(proc, Token_Mul, d, f, ft);
jmag = ir_emit_arith(proc, Token_Sub, j1, j0, ft);
jmag = ir_emit_arith(proc, Token_Add, imag, j2, ft);
jmag = ir_emit_arith(proc, Token_Sub, imag, j3, ft);
jmag = ir_emit_arith(proc, Token_Quo, jmag, s, ft);
irValue *k0 = ir_emit_arith(proc, Token_Mul, a, h, ft);
irValue *k1 = ir_emit_arith(proc, Token_Mul, b, g, ft);
irValue *k2 = ir_emit_arith(proc, Token_Mul, c, f, ft);
irValue *k3 = ir_emit_arith(proc, Token_Mul, d, e, ft);
kmag = ir_emit_arith(proc, Token_Add, k2, k3, ft);
kmag = ir_emit_arith(proc, Token_Sub, imag, k0, ft);
kmag = ir_emit_arith(proc, Token_Sub, imag, k1, ft);
kmag = ir_emit_arith(proc, Token_Quo, kmag, s, ft);
} break;
}
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 1), imag);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 2), jmag);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 3), kmag);
ir_emit_comment(proc, str_lit("quaternion.end.begin"));
return ir_emit_load(proc, res);
}
if (op == Token_Add) {
if (is_type_pointer(t_left)) {
@@ -1890,6 +2066,20 @@ irValue *ir_emit_struct_ep(irProcedure *proc, irValue *s, i32 index) {
GB_ASSERT(t->Tuple.variable_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Tuple.variable_count-1));
result_type = make_type_pointer(a, t->Tuple.variables[index]->type);
} else if (is_type_complex(t)) {
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = make_type_pointer(a, ft); break;
case 1: result_type = make_type_pointer(a, ft); break;
}
} else if (is_type_quaternion(t)) {
Type *ft = base_quaternion_elem_type(t);
switch (index) {
case 0: result_type = make_type_pointer(a, ft); break;
case 1: result_type = make_type_pointer(a, ft); break;
case 2: result_type = make_type_pointer(a, ft); break;
case 3: result_type = make_type_pointer(a, ft); break;
}
} else if (is_type_slice(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, make_type_pointer(a, t->Slice.elem)); break;
@@ -1956,6 +2146,20 @@ irValue *ir_emit_struct_ev(irProcedure *proc, irValue *s, i32 index) {
GB_ASSERT(t->Tuple.variable_count > 0);
GB_ASSERT(gb_is_between(index, 0, t->Tuple.variable_count-1));
result_type = t->Tuple.variables[index]->type;
} else if (is_type_complex(t)) {
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
}
} else if (is_type_quaternion(t)) {
Type *ft = base_quaternion_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
case 2: result_type = ft; break;
case 3: result_type = ft; break;
}
} else if (is_type_slice(t)) {
switch (index) {
case 0: result_type = make_type_pointer(a, t->Slice.elem); break;
@@ -2285,6 +2489,10 @@ irValue *ir_emit_conv(irProcedure *proc, irValue *value, Type *t) {
ExactValue ev = value->Constant.value;
if (is_type_float(dst)) {
ev = exact_value_to_float(ev);
} else if (is_type_complex(dst)) {
ev = exact_value_to_complex(ev);
} else if (is_type_quaternion(dst)) {
ev = exact_value_to_quaternion(ev);
} else if (is_type_string(dst)) {
// Handled elsewhere
GB_ASSERT(ev.kind == ExactValue_String);
@@ -2350,6 +2558,30 @@ irValue *ir_emit_conv(irProcedure *proc, irValue *value, Type *t) {
return ir_emit(proc, ir_instr_conv(proc, kind, value, src, dst));
}
if (is_type_complex(src) && is_type_complex(dst)) {
Type *ft = base_complex_elem_type(dst);
irValue *gen = ir_add_local_generated(proc, dst);
irValue *real = ir_emit_conv(proc, ir_emit_struct_ev(proc, value, 0), ft);
irValue *imag = ir_emit_conv(proc, ir_emit_struct_ev(proc, value, 1), ft);
ir_emit_store(proc, ir_emit_struct_ep(proc, gen, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, gen, 1), imag);
return ir_emit_load(proc, gen);
}
if (is_type_quaternion(src) && is_type_quaternion(dst)) {
Type *ft = base_quaternion_elem_type(dst);
irValue *gen = ir_add_local_generated(proc, dst);
irValue *real = ir_emit_conv(proc, ir_emit_struct_ev(proc, value, 0), ft);
irValue *imag = ir_emit_conv(proc, ir_emit_struct_ev(proc, value, 1), ft);
irValue *jmag = ir_emit_conv(proc, ir_emit_struct_ev(proc, value, 2), ft);
irValue *kmag = ir_emit_conv(proc, ir_emit_struct_ev(proc, value, 3), ft);
ir_emit_store(proc, ir_emit_struct_ep(proc, gen, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, gen, 1), imag);
ir_emit_store(proc, ir_emit_struct_ep(proc, gen, 2), jmag);
ir_emit_store(proc, ir_emit_struct_ep(proc, gen, 3), kmag);
return ir_emit_load(proc, gen);
}
// float <-> integer
if (is_type_float(src) && is_type_integer(dst)) {
irConvKind kind = irConv_fptosi;
@@ -3704,6 +3936,96 @@ irValue *ir_build_expr(irProcedure *proc, AstNode *expr) {
// return ir_emit(proc, ir_instr_vector_shuffle(proc, vector, indices, index_count));
} break;
case BuiltinProc_complex: {
ir_emit_comment(proc, str_lit("complex"));
irValue *real = ir_build_expr(proc, ce->args.e[0]);
irValue *imag = ir_build_expr(proc, ce->args.e[1]);
irValue *dst = ir_add_local_generated(proc, tv->type);
Type *ft = base_complex_elem_type(tv->type);
real = ir_emit_conv(proc, real, ft);
imag = ir_emit_conv(proc, imag, ft);
ir_emit_store(proc, ir_emit_struct_ep(proc, dst, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, dst, 1), imag);
return ir_emit_load(proc, dst);
} break;
case BuiltinProc_quaternion: {
ir_emit_comment(proc, str_lit("quaternion"));
irValue *real = ir_build_expr(proc, ce->args.e[0]);
irValue *imag = ir_build_expr(proc, ce->args.e[1]);
irValue *jmag = ir_build_expr(proc, ce->args.e[2]);
irValue *kmag = ir_build_expr(proc, ce->args.e[3]);
irValue *dst = ir_add_local_generated(proc, tv->type);
Type *ft = base_complex_elem_type(tv->type);
real = ir_emit_conv(proc, real, ft);
imag = ir_emit_conv(proc, imag, ft);
jmag = ir_emit_conv(proc, jmag, ft);
kmag = ir_emit_conv(proc, kmag, ft);
ir_emit_store(proc, ir_emit_struct_ep(proc, dst, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, dst, 1), imag);
ir_emit_store(proc, ir_emit_struct_ep(proc, dst, 2), jmag);
ir_emit_store(proc, ir_emit_struct_ep(proc, dst, 3), kmag);
return ir_emit_load(proc, dst);
} break;
case BuiltinProc_real: {
ir_emit_comment(proc, str_lit("real"));
irValue *val = ir_build_expr(proc, ce->args.e[0]);
irValue *real = ir_emit_struct_ev(proc, val, 0);
return ir_emit_conv(proc, real, tv->type);
} break;
case BuiltinProc_imag: {
ir_emit_comment(proc, str_lit("imag"));
irValue *val = ir_build_expr(proc, ce->args.e[0]);
irValue *imag = ir_emit_struct_ev(proc, val, 1);
return ir_emit_conv(proc, imag, tv->type);
} break;
case BuiltinProc_jmag: {
ir_emit_comment(proc, str_lit("jmag"));
irValue *val = ir_build_expr(proc, ce->args.e[0]);
irValue *jmag = ir_emit_struct_ev(proc, val, 2);
return ir_emit_conv(proc, jmag, tv->type);
} break;
case BuiltinProc_kmag: {
ir_emit_comment(proc, str_lit("kmag"));
irValue *val = ir_build_expr(proc, ce->args.e[0]);
irValue *kmag = ir_emit_struct_ev(proc, val, 3);
return ir_emit_conv(proc, kmag, tv->type);
} break;
case BuiltinProc_conj: {
ir_emit_comment(proc, str_lit("conj"));
irValue *val = ir_build_expr(proc, ce->args.e[0]);
irValue *res = NULL;
Type *t = ir_type(val);
if (is_type_complex(t)) {
res = ir_add_local_generated(proc, tv->type);
irValue *real = ir_emit_struct_ev(proc, val, 0);
irValue *imag = ir_emit_struct_ev(proc, val, 1);
imag = ir_emit_unary_arith(proc, Token_Sub, imag, ir_type(imag));
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 1), imag);
} else if (is_type_quaternion(t)) {
res = ir_add_local_generated(proc, tv->type);
irValue *real = ir_emit_struct_ev(proc, val, 0);
irValue *imag = ir_emit_struct_ev(proc, val, 1);
irValue *jmag = ir_emit_struct_ev(proc, val, 2);
irValue *kmag = ir_emit_struct_ev(proc, val, 3);
imag = ir_emit_unary_arith(proc, Token_Sub, imag, ir_type(imag));
jmag = ir_emit_unary_arith(proc, Token_Sub, jmag, ir_type(jmag));
kmag = ir_emit_unary_arith(proc, Token_Sub, kmag, ir_type(kmag));
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 0), real);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 1), imag);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 2), jmag);
ir_emit_store(proc, ir_emit_struct_ep(proc, res, 3), kmag);
}
return ir_emit_load(proc, res);
} break;
case BuiltinProc_slice_ptr: {
ir_emit_comment(proc, str_lit("slice_ptr"));
irValue *ptr = ir_build_expr(proc, ce->args.e[0]);
@@ -3760,6 +4082,27 @@ irValue *ir_build_expr(irProcedure *proc, AstNode *expr) {
ir_emit_comment(proc, str_lit("abs"));
irValue *x = ir_build_expr(proc, ce->args.e[0]);
Type *t = ir_type(x);
if (is_type_complex(t)) {
gbAllocator a = proc->module->allocator;
i64 sz = 8*type_size_of(a, t);
irValue **args = gb_alloc_array(a, irValue *, 1);
args[0] = x;
switch (sz) {
case 64: return ir_emit_global_call(proc, "__abs_complex64", args, 1);
case 128: return ir_emit_global_call(proc, "__abs_complex128", args, 1);
}
GB_PANIC("Unknown complex type");
} else if (is_type_quaternion(t)) {
gbAllocator a = proc->module->allocator;
i64 sz = 8*type_size_of(a, t);
irValue **args = gb_alloc_array(a, irValue *, 1);
args[0] = x;
switch (sz) {
case 128: return ir_emit_global_call(proc, "__abs_quaternion128", args, 1);
case 256: return ir_emit_global_call(proc, "__abs_quaternion256", args, 1);
}
GB_PANIC("Unknown quaternion type");
}
irValue *zero = ir_emit_conv(proc, v_zero, t);
irValue *cond = ir_emit_comp(proc, Token_Lt, x, zero);
irValue *neg = ir_emit(proc, ir_instr_unary_op(proc, Token_Sub, x, t));
@@ -6528,8 +6871,6 @@ void ir_gen_tree(irGen *s) {
case Basic_u32:
case Basic_i64:
case Basic_u64:
// case Basic_i128:
// case Basic_u128:
case Basic_int:
case Basic_uint: {
tag = ir_emit_conv(proc, ti_ptr, t_type_info_integer_ptr);
@@ -6540,16 +6881,27 @@ void ir_gen_tree(irGen *s) {
ir_emit_store(proc, ir_emit_struct_ep(proc, tag, 1), is_signed);
} break;
// case Basic_f16:
case Basic_f32:
case Basic_f64:
// case Basic_f128:
{
case Basic_f64: {
tag = ir_emit_conv(proc, ti_ptr, t_type_info_float_ptr);
irValue *bits = ir_const_int(a, type_size_of(a, t));
ir_emit_store(proc, ir_emit_struct_ep(proc, tag, 0), bits);
} break;
case Basic_complex64:
case Basic_complex128: {
tag = ir_emit_conv(proc, ti_ptr, t_type_info_complex_ptr);
irValue *bits = ir_const_int(a, type_size_of(a, t));
ir_emit_store(proc, ir_emit_struct_ep(proc, tag, 0), bits);
} break;
case Basic_quaternion128:
case Basic_quaternion256: {
tag = ir_emit_conv(proc, ti_ptr, t_type_info_quaternion_ptr);
irValue *bits = ir_const_int(a, type_size_of(a, t));
ir_emit_store(proc, ir_emit_struct_ep(proc, tag, 0), bits);
} break;
case Basic_rawptr:
tag = ir_emit_conv(proc, ti_ptr, t_type_info_pointer_ptr);
break;

View File

@@ -145,26 +145,30 @@ void ir_print_type(irFileBuffer *f, irModule *m, Type *t) {
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_bool: ir_fprintf(f, "i1"); return;
case Basic_i8: ir_fprintf(f, "i8"); return;
case Basic_u8: ir_fprintf(f, "i8"); return;
case Basic_i16: ir_fprintf(f, "i16"); return;
case Basic_u16: ir_fprintf(f, "i16"); return;
case Basic_i32: ir_fprintf(f, "i32"); return;
case Basic_u32: ir_fprintf(f, "i32"); return;
case Basic_i64: ir_fprintf(f, "i64"); return;
case Basic_u64: ir_fprintf(f, "i64"); return;
// case Basic_i128: ir_fprintf(f, "i128"); return;
// case Basic_u128: ir_fprintf(f, "i128"); return;
// case Basic_f16: ir_fprintf(f, "half"); return;
case Basic_f32: ir_fprintf(f, "float"); return;
case Basic_f64: ir_fprintf(f, "double"); return;
// case Basic_f128: ir_fprintf(f, "fp128"); return;
case Basic_rawptr: ir_fprintf(f, "%%..rawptr"); return;
case Basic_string: ir_fprintf(f, "%%..string"); return;
case Basic_uint: ir_fprintf(f, "i%lld", word_bits); return;
case Basic_int: ir_fprintf(f, "i%lld", word_bits); return;
case Basic_any: ir_fprintf(f, "%%..any"); return;
case Basic_bool: ir_fprintf(f, "i1"); return;
case Basic_i8: ir_fprintf(f, "i8"); return;
case Basic_u8: ir_fprintf(f, "i8"); return;
case Basic_i16: ir_fprintf(f, "i16"); return;
case Basic_u16: ir_fprintf(f, "i16"); return;
case Basic_i32: ir_fprintf(f, "i32"); return;
case Basic_u32: ir_fprintf(f, "i32"); return;
case Basic_i64: ir_fprintf(f, "i64"); return;
case Basic_u64: ir_fprintf(f, "i64"); return;
case Basic_f32: ir_fprintf(f, "float"); return;
case Basic_f64: ir_fprintf(f, "double"); return;
case Basic_complex64: ir_fprintf(f, "%%..complex64"); return;
case Basic_complex128: ir_fprintf(f, "%%..complex128"); return;
case Basic_quaternion128: ir_fprintf(f, "%%..quaternion128"); return;
case Basic_quaternion256: ir_fprintf(f, "%%..quaternion256"); return;
case Basic_rawptr: ir_fprintf(f, "%%..rawptr"); return;
case Basic_string: ir_fprintf(f, "%%..string"); return;
case Basic_uint: ir_fprintf(f, "i%lld", word_bits); return;
case Basic_int: ir_fprintf(f, "i%lld", word_bits); return;
case Basic_any: ir_fprintf(f, "%%..any"); return;
}
break;
case Type_Pointer:
@@ -365,7 +369,7 @@ void ir_print_exact_value(irFileBuffer *f, irModule *m, ExactValue value, Type *
} break;
case ExactValue_Float: {
GB_ASSERT_MSG(is_type_float(type), "%s", type_to_string(type));
type = base_type(type);
type = core_type(type);
u64 u = *cast(u64*)&value.value_float;
switch (type->Basic.kind) {
case Basic_f32:
@@ -382,28 +386,52 @@ void ir_print_exact_value(irFileBuffer *f, irModule *m, ExactValue value, Type *
switch (type->Basic.kind) {
case 0: break;
#if 0
case Basic_f16:
ir_fprintf(f, "bitcast (");
ir_print_type(f, m, t_u16);
ir_fprintf(f, " %u to ", cast(u16)f32_to_f16(cast(f32)value.value_float));
ir_print_type(f, m, t_f16);
ir_fprintf(f, ")");
break;
case Basic_f128:
ir_fprintf(f, "bitcast (");
ir_fprintf(f, "i128");
// TODO(bill): Actually support f128
ir_fprintf(f, " %llu to ", u);
ir_print_type(f, m, t_f128);
ir_fprintf(f, ")");
break;
#endif
default:
ir_fprintf(f, "0x%016llx", u);
break;
}
} break;
case ExactValue_Complex: {
type = core_type(type);
if (is_type_quaternion(type)) {
Type *ft = base_quaternion_elem_type(type);
ir_fprintf(f, " {"); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_complex.real), ft);
ir_fprintf(f, ", "); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_complex.imag), ft);
ir_fprintf(f, ", "); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(0), ft);
ir_fprintf(f, ", "); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(0), ft);
ir_fprintf(f, "}");
} else {
GB_ASSERT_MSG(is_type_complex(type), "%s", type_to_string(type));
Type *ft = base_complex_elem_type(type);
ir_fprintf(f, " {"); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_complex.real), ft);
ir_fprintf(f, ", "); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_complex.imag), ft);
ir_fprintf(f, "}");
}
} break;
case ExactValue_Quaternion: {
GB_ASSERT_MSG(is_type_quaternion(type), "%s", type_to_string(type));
type = core_type(type);
Type *ft = base_quaternion_elem_type(type);
ir_fprintf(f, " {"); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_quaternion.real), ft);
ir_fprintf(f, ", "); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_quaternion.imag), ft);
ir_fprintf(f, ", "); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_quaternion.jmag), ft);
ir_fprintf(f, ", "); ir_print_type(f, m, ft); ir_fprintf(f, " ");
ir_print_exact_value(f, m, exact_value_float(value.value_quaternion.kmag), ft);
ir_fprintf(f, "}");
} break;
case ExactValue_Pointer:
if (value.value_pointer == 0) {
ir_fprintf(f, "null");
@@ -1007,6 +1035,72 @@ void ir_print_instr(irFileBuffer *f, irModule *m, irValue *value) {
case Token_LtEq: ir_fprintf(f, "ole"); break;
case Token_GtEq: ir_fprintf(f, "oge"); break;
}
} else if (is_type_complex(elem_type)) {
ir_fprintf(f, "call ");
ir_print_calling_convention(f, m, ProcCC_Odin);
ir_print_type(f, m, t_bool);
char *runtime_proc = "";
i64 sz = 8*type_size_of(m->allocator, elem_type);
switch (sz) {
case 64:
switch (bo->op) {
case Token_CmpEq: runtime_proc = "__complex64_eq"; break;
case Token_NotEq: runtime_proc = "__complex64_ne"; break;
}
break;
case 128:
switch (bo->op) {
case Token_CmpEq: runtime_proc = "__complex128_eq"; break;
case Token_NotEq: runtime_proc = "__complex128_ne"; break;
}
break;
}
ir_fprintf(f, " ");
ir_print_encoded_global(f, make_string_c(runtime_proc), false);
ir_fprintf(f, "(");
ir_print_type(f, m, type);
ir_fprintf(f, " ");
ir_print_value(f, m, bo->left, type);
ir_fprintf(f, ", ");
ir_print_type(f, m, type);
ir_fprintf(f, " ");
ir_print_value(f, m, bo->right, type);
ir_fprintf(f, ")\n");
return;
} else if (is_type_quaternion(elem_type)) {
ir_fprintf(f, "call ");
ir_print_calling_convention(f, m, ProcCC_Odin);
ir_print_type(f, m, t_bool);
char *runtime_proc = "";
i64 sz = 8*type_size_of(m->allocator, elem_type);
switch (sz) {
case 128:
switch (bo->op) {
case Token_CmpEq: runtime_proc = "__quaternion128_eq"; break;
case Token_NotEq: runtime_proc = "__quaternion128_ne"; break;
}
break;
case 256:
switch (bo->op) {
case Token_CmpEq: runtime_proc = "__quaternion256_eq"; break;
case Token_NotEq: runtime_proc = "__quaternion256_ne"; break;
}
break;
}
ir_fprintf(f, " ");
ir_print_encoded_global(f, make_string_c(runtime_proc), false);
ir_fprintf(f, "(");
ir_print_type(f, m, type);
ir_fprintf(f, " ");
ir_print_value(f, m, bo->left, type);
ir_fprintf(f, ", ");
ir_print_type(f, m, type);
ir_fprintf(f, " ");
ir_print_value(f, m, bo->right, type);
ir_fprintf(f, ")\n");
return;
} else {
ir_fprintf(f, "icmp ");
if (bo->op != Token_CmpEq &&
@@ -1415,6 +1509,16 @@ void print_llvm_ir(irGen *ir) {
ir_print_encoded_local(f, str_lit("..rawptr"));
ir_fprintf(f, " = type i8* ; Basic_rawptr\n");
ir_print_encoded_local(f, str_lit("..complex64"));
ir_fprintf(f, " = type {float, float} ; Basic_complex64\n");
ir_print_encoded_local(f, str_lit("..complex128"));
ir_fprintf(f, " = type {double, double} ; Basic_complex128\n");
ir_print_encoded_local(f, str_lit("..quaternion128"));
ir_fprintf(f, " = type {float, float, float, float} ; Basic_quaternion128\n");
ir_print_encoded_local(f, str_lit("..quaternion256"));
ir_fprintf(f, " = type {double, double, double, double} ; Basic_quaternion256\n");
ir_print_encoded_local(f, str_lit("..any"));
ir_fprintf(f, " = type {");
ir_print_type(f, m, t_type_info_ptr);

View File

@@ -261,7 +261,7 @@ int main(int argc, char **argv) {
#if defined(GB_SYSTEM_WINDOWS)
// For more passes arguments: http://llvm.org/docs/Passes.html
exit_code = system_exec_command_line_app("llvm-opt", false,
"\"%.*sbin/opt\" \"%s\" -o \"%.*s\".bc "
"\"%.*sbin/opt\" \"%s\" -o \"%.*s.bc\" "
"-mem2reg "
"-memcpyopt "
"-die "

View File

@@ -1735,6 +1735,7 @@ AstNode *parse_operand(AstFile *f, bool lhs) {
case Token_Integer:
case Token_Float:
case Token_Imag:
case Token_Rune:
operand = ast_basic_lit(f, f->curr_token);
next_token(f);
@@ -3238,6 +3239,7 @@ AstNode *parse_stmt(AstFile *f) {
case Token_Ident:
case Token_Integer:
case Token_Float:
case Token_Imag:
case Token_Rune:
case Token_String:
case Token_OpenParen:

View File

@@ -7,6 +7,7 @@ TOKEN_KIND(Token__LiteralBegin, "_LiteralBegin"), \
TOKEN_KIND(Token_Ident, "identifier"), \
TOKEN_KIND(Token_Integer, "integer"), \
TOKEN_KIND(Token_Float, "float"), \
TOKEN_KIND(Token_Imag, "imaginary"), \
TOKEN_KIND(Token_Rune, "rune"), \
TOKEN_KIND(Token_String, "string"), \
TOKEN_KIND(Token__LiteralEnd, "_LiteralEnd"), \
@@ -547,18 +548,18 @@ Token scan_number_to_token(Tokenizer *t, bool seen_decimal_point) {
}
}
token.string.len = t->curr - token.string.text;
return token;
goto end;
}
scan_mantissa(t, 10);
fraction:
if (t->curr_rune == '.') {
// HACK(bill): This may be inefficient
TokenizerState state = save_tokenizer_state(t);
advance_to_next_rune(t);
if (digit_value(t->curr_rune) >= 10) {
if (t->curr_rune == '.') {
// TODO(bill): Clean up this shit
restore_tokenizer_state(t, &state);
goto end;
@@ -577,6 +578,13 @@ exponent:
scan_mantissa(t, 10);
}
switch (t->curr_rune) {
case 'i': case 'j': case 'k':
token.kind = Token_Imag;
advance_to_next_rune(t);
break;
}
end:
token.string.len = t->curr - token.string.text;
return token;

View File

@@ -12,25 +12,15 @@ typedef enum BasicKind {
Basic_i64,
Basic_u64,
/* Basic_i16le,
Basic_i16be,
Basic_u16le,
Basic_u16be,
Basic_i32le,
Basic_i32be,
Basic_u32le,
Basic_u32be,
Basic_i64le,
Basic_i64be,
Basic_u64le,
Basic_u64be, */
// Basic_i128,
// Basic_u128,
// Basic_f16,
Basic_f32,
Basic_f64,
// Basic_f128,
Basic_complex64,
Basic_complex128,
Basic_quaternion128,
Basic_quaternion256,
Basic_int,
Basic_uint,
Basic_rawptr,
@@ -40,6 +30,8 @@ typedef enum BasicKind {
Basic_UntypedBool,
Basic_UntypedInteger,
Basic_UntypedFloat,
Basic_UntypedComplex,
Basic_UntypedQuaternion,
Basic_UntypedString,
Basic_UntypedRune,
Basic_UntypedNil,
@@ -51,17 +43,19 @@ typedef enum BasicKind {
} BasicKind;
typedef enum BasicFlag {
BasicFlag_Boolean = GB_BIT(0),
BasicFlag_Integer = GB_BIT(1),
BasicFlag_Unsigned = GB_BIT(2),
BasicFlag_Float = GB_BIT(3),
BasicFlag_Pointer = GB_BIT(4),
BasicFlag_String = GB_BIT(5),
BasicFlag_Rune = GB_BIT(6),
BasicFlag_Untyped = GB_BIT(7),
BasicFlag_Boolean = GB_BIT(0),
BasicFlag_Integer = GB_BIT(1),
BasicFlag_Unsigned = GB_BIT(2),
BasicFlag_Float = GB_BIT(3),
BasicFlag_Complex = GB_BIT(4),
BasicFlag_Quaternion = GB_BIT(5),
BasicFlag_Pointer = GB_BIT(6),
BasicFlag_String = GB_BIT(7),
BasicFlag_Rune = GB_BIT(8),
BasicFlag_Untyped = GB_BIT(9),
BasicFlag_Numeric = BasicFlag_Integer | BasicFlag_Float,
BasicFlag_Ordered = BasicFlag_Numeric | BasicFlag_String | BasicFlag_Pointer,
BasicFlag_Numeric = BasicFlag_Integer | BasicFlag_Float | BasicFlag_Complex | BasicFlag_Quaternion,
BasicFlag_Ordered = BasicFlag_Integer | BasicFlag_Float | BasicFlag_String | BasicFlag_Pointer,
BasicFlag_ConstantType = BasicFlag_Boolean | BasicFlag_Numeric | BasicFlag_Pointer | BasicFlag_String | BasicFlag_Rune,
} BasicFlag;
@@ -209,33 +203,43 @@ void selection_add_index(Selection *s, isize index) {
gb_global Type basic_types[] = {
{Type_Basic, {Basic_Invalid, 0, 0, STR_LIT("invalid type")}},
{Type_Basic, {Basic_bool, BasicFlag_Boolean, 1, STR_LIT("bool")}},
{Type_Basic, {Basic_i8, BasicFlag_Integer, 1, STR_LIT("i8")}},
{Type_Basic, {Basic_u8, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("u8")}},
{Type_Basic, {Basic_i16, BasicFlag_Integer, 2, STR_LIT("i16")}},
{Type_Basic, {Basic_u16, BasicFlag_Integer | BasicFlag_Unsigned, 2, STR_LIT("u16")}},
{Type_Basic, {Basic_i32, BasicFlag_Integer, 4, STR_LIT("i32")}},
{Type_Basic, {Basic_u32, BasicFlag_Integer | BasicFlag_Unsigned, 4, STR_LIT("u32")}},
{Type_Basic, {Basic_i64, BasicFlag_Integer, 8, STR_LIT("i64")}},
{Type_Basic, {Basic_u64, BasicFlag_Integer | BasicFlag_Unsigned, 8, STR_LIT("u64")}},
// {Type_Basic, {Basic_i128, BasicFlag_Integer, 16, STR_LIT("i128")}},
// {Type_Basic, {Basic_u128, BasicFlag_Integer | BasicFlag_Unsigned, 16, STR_LIT("u128")}},
// {Type_Basic, {Basic_f16, BasicFlag_Float, 2, STR_LIT("f16")}},
{Type_Basic, {Basic_f32, BasicFlag_Float, 4, STR_LIT("f32")}},
{Type_Basic, {Basic_f64, BasicFlag_Float, 8, STR_LIT("f64")}},
// {Type_Basic, {Basic_f128, BasicFlag_Float, 16, STR_LIT("f128")}},
{Type_Basic, {Basic_int, BasicFlag_Integer, -1, STR_LIT("int")}},
{Type_Basic, {Basic_uint, BasicFlag_Integer | BasicFlag_Unsigned, -1, STR_LIT("uint")}},
{Type_Basic, {Basic_rawptr, BasicFlag_Pointer, -1, STR_LIT("rawptr")}},
{Type_Basic, {Basic_string, BasicFlag_String, -1, STR_LIT("string")}},
{Type_Basic, {Basic_any, 0, -1, STR_LIT("any")}},
{Type_Basic, {Basic_UntypedBool, BasicFlag_Boolean | BasicFlag_Untyped, 0, STR_LIT("untyped bool")}},
{Type_Basic, {Basic_UntypedInteger, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped integer")}},
{Type_Basic, {Basic_UntypedFloat, BasicFlag_Float | BasicFlag_Untyped, 0, STR_LIT("untyped float")}},
{Type_Basic, {Basic_UntypedString, BasicFlag_String | BasicFlag_Untyped, 0, STR_LIT("untyped string")}},
{Type_Basic, {Basic_UntypedRune, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped rune")}},
{Type_Basic, {Basic_UntypedNil, BasicFlag_Untyped, 0, STR_LIT("untyped nil")}},
{Type_Basic, {Basic_Invalid, 0, 0, STR_LIT("invalid type")}},
{Type_Basic, {Basic_bool, BasicFlag_Boolean, 1, STR_LIT("bool")}},
{Type_Basic, {Basic_i8, BasicFlag_Integer, 1, STR_LIT("i8")}},
{Type_Basic, {Basic_u8, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("u8")}},
{Type_Basic, {Basic_i16, BasicFlag_Integer, 2, STR_LIT("i16")}},
{Type_Basic, {Basic_u16, BasicFlag_Integer | BasicFlag_Unsigned, 2, STR_LIT("u16")}},
{Type_Basic, {Basic_i32, BasicFlag_Integer, 4, STR_LIT("i32")}},
{Type_Basic, {Basic_u32, BasicFlag_Integer | BasicFlag_Unsigned, 4, STR_LIT("u32")}},
{Type_Basic, {Basic_i64, BasicFlag_Integer, 8, STR_LIT("i64")}},
{Type_Basic, {Basic_u64, BasicFlag_Integer | BasicFlag_Unsigned, 8, STR_LIT("u64")}},
{Type_Basic, {Basic_f32, BasicFlag_Float, 4, STR_LIT("f32")}},
{Type_Basic, {Basic_f64, BasicFlag_Float, 8, STR_LIT("f64")}},
{Type_Basic, {Basic_complex64, BasicFlag_Complex, 8, STR_LIT("complex64")}},
{Type_Basic, {Basic_complex128, BasicFlag_Complex, 16, STR_LIT("complex128")}},
{Type_Basic, {Basic_quaternion128, BasicFlag_Quaternion, 16, STR_LIT("quaternion128")}},
{Type_Basic, {Basic_quaternion256, BasicFlag_Quaternion, 32, STR_LIT("quaternion256")}},
{Type_Basic, {Basic_int, BasicFlag_Integer, -1, STR_LIT("int")}},
{Type_Basic, {Basic_uint, BasicFlag_Integer | BasicFlag_Unsigned, -1, STR_LIT("uint")}},
{Type_Basic, {Basic_rawptr, BasicFlag_Pointer, -1, STR_LIT("rawptr")}},
{Type_Basic, {Basic_string, BasicFlag_String, -1, STR_LIT("string")}},
{Type_Basic, {Basic_any, 0, -1, STR_LIT("any")}},
{Type_Basic, {Basic_UntypedBool, BasicFlag_Boolean | BasicFlag_Untyped, 0, STR_LIT("untyped bool")}},
{Type_Basic, {Basic_UntypedInteger, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped integer")}},
{Type_Basic, {Basic_UntypedFloat, BasicFlag_Float | BasicFlag_Untyped, 0, STR_LIT("untyped float")}},
{Type_Basic, {Basic_UntypedComplex, BasicFlag_Complex | BasicFlag_Untyped, 0, STR_LIT("untyped complex")}},
{Type_Basic, {Basic_UntypedQuaternion, BasicFlag_Quaternion | BasicFlag_Untyped, 0, STR_LIT("untyped quaternion")}},
{Type_Basic, {Basic_UntypedString, BasicFlag_String | BasicFlag_Untyped, 0, STR_LIT("untyped string")}},
{Type_Basic, {Basic_UntypedRune, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped rune")}},
{Type_Basic, {Basic_UntypedNil, BasicFlag_Untyped, 0, STR_LIT("untyped nil")}},
};
gb_global Type basic_type_aliases[] = {
@@ -253,25 +257,33 @@ gb_global Type *t_i32 = &basic_types[Basic_i32];
gb_global Type *t_u32 = &basic_types[Basic_u32];
gb_global Type *t_i64 = &basic_types[Basic_i64];
gb_global Type *t_u64 = &basic_types[Basic_u64];
// gb_global Type *t_i128 = &basic_types[Basic_i128];
// gb_global Type *t_u128 = &basic_types[Basic_u128];
// gb_global Type *t_f16 = &basic_types[Basic_f16];
gb_global Type *t_f32 = &basic_types[Basic_f32];
gb_global Type *t_f64 = &basic_types[Basic_f64];
// gb_global Type *t_f128 = &basic_types[Basic_f128];
gb_global Type *t_complex64 = &basic_types[Basic_complex64];
gb_global Type *t_complex128 = &basic_types[Basic_complex128];
gb_global Type *t_quaternion128 = &basic_types[Basic_quaternion128];
gb_global Type *t_quaternion256 = &basic_types[Basic_quaternion256];
gb_global Type *t_int = &basic_types[Basic_int];
gb_global Type *t_uint = &basic_types[Basic_uint];
gb_global Type *t_rawptr = &basic_types[Basic_rawptr];
gb_global Type *t_string = &basic_types[Basic_string];
gb_global Type *t_any = &basic_types[Basic_any];
gb_global Type *t_untyped_bool = &basic_types[Basic_UntypedBool];
gb_global Type *t_untyped_integer = &basic_types[Basic_UntypedInteger];
gb_global Type *t_untyped_float = &basic_types[Basic_UntypedFloat];
gb_global Type *t_untyped_string = &basic_types[Basic_UntypedString];
gb_global Type *t_untyped_rune = &basic_types[Basic_UntypedRune];
gb_global Type *t_untyped_nil = &basic_types[Basic_UntypedNil];
gb_global Type *t_byte = &basic_type_aliases[0];
gb_global Type *t_rune = &basic_type_aliases[1];
gb_global Type *t_untyped_bool = &basic_types[Basic_UntypedBool];
gb_global Type *t_untyped_integer = &basic_types[Basic_UntypedInteger];
gb_global Type *t_untyped_float = &basic_types[Basic_UntypedFloat];
gb_global Type *t_untyped_complex = &basic_types[Basic_UntypedComplex];
gb_global Type *t_untyped_quaternion = &basic_types[Basic_UntypedQuaternion];
gb_global Type *t_untyped_string = &basic_types[Basic_UntypedString];
gb_global Type *t_untyped_rune = &basic_types[Basic_UntypedRune];
gb_global Type *t_untyped_nil = &basic_types[Basic_UntypedNil];
gb_global Type *t_byte = &basic_type_aliases[0];
gb_global Type *t_rune = &basic_type_aliases[1];
gb_global Type *t_u8_ptr = NULL;
@@ -293,6 +305,8 @@ gb_global Type *t_type_info_enum_value_ptr = NULL;
gb_global Type *t_type_info_named = NULL;
gb_global Type *t_type_info_integer = NULL;
gb_global Type *t_type_info_float = NULL;
gb_global Type *t_type_info_complex = NULL;
gb_global Type *t_type_info_quaternion = NULL;
gb_global Type *t_type_info_any = NULL;
gb_global Type *t_type_info_string = NULL;
gb_global Type *t_type_info_boolean = NULL;
@@ -312,6 +326,8 @@ gb_global Type *t_type_info_map = NULL;
gb_global Type *t_type_info_named_ptr = NULL;
gb_global Type *t_type_info_integer_ptr = NULL;
gb_global Type *t_type_info_float_ptr = NULL;
gb_global Type *t_type_info_complex_ptr = NULL;
gb_global Type *t_type_info_quaternion_ptr = NULL;
gb_global Type *t_type_info_any_ptr = NULL;
gb_global Type *t_type_info_string_ptr = NULL;
gb_global Type *t_type_info_boolean_ptr = NULL;
@@ -615,6 +631,20 @@ bool is_type_float(Type *t) {
}
return false;
}
bool is_type_complex(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Complex) != 0;
}
return false;
}
bool is_type_quaternion(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Quaternion) != 0;
}
return false;
}
bool is_type_f32(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
@@ -695,6 +725,31 @@ Type *base_vector_type(Type *t) {
return t;
}
Type *base_complex_elem_type(Type *t) {
t = core_type(t);
if (is_type_complex(t)) {
switch (t->Basic.kind) {
case Basic_complex64: return t_f32;
case Basic_complex128: return t_f64;
case Basic_UntypedComplex: return t_untyped_float;
}
}
GB_PANIC("Invalid complex type");
return t_invalid;
}
Type *base_quaternion_elem_type(Type *t) {
t = core_type(t);
if (is_type_quaternion(t)) {
switch (t->Basic.kind) {
case Basic_quaternion128: return t_f32;
case Basic_quaternion256: return t_f64;
case Basic_UntypedQuaternion: return t_untyped_float;
}
}
GB_PANIC("Invalid quaternion type");
return t_invalid;
}
bool is_type_struct(Type *t) {
t = base_type(t);
@@ -950,11 +1005,13 @@ Type *default_type(Type *type) {
}
if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_UntypedBool: return t_bool;
case Basic_UntypedInteger: return t_int;
case Basic_UntypedFloat: return t_f64;
case Basic_UntypedString: return t_string;
case Basic_UntypedRune: return t_rune;
case Basic_UntypedBool: return t_bool;
case Basic_UntypedInteger: return t_int;
case Basic_UntypedFloat: return t_f64;
case Basic_UntypedComplex: return t_complex128;
case Basic_UntypedQuaternion: return t_quaternion256;
case Basic_UntypedString: return t_string;
case Basic_UntypedRune: return t_rune;
}
}
return type;
@@ -1542,6 +1599,11 @@ i64 type_align_of_internal(gbAllocator allocator, Type *t, TypePath *path) {
case Basic_int: case Basic_uint: case Basic_rawptr:
return build_context.word_size;
case Basic_complex64: case Basic_complex128:
return type_size_of_internal(allocator, t, path) / 2;
case Basic_quaternion128: case Basic_quaternion256:
return type_size_of_internal(allocator, t, path) / 4;
}
} break;