add math easing package

This commit is contained in:
Michael Kutowski
2022-03-27 11:32:46 +02:00
committed by GitHub
parent 92f985abd5
commit d2ff6f424d

466
core/math/ease/ease.odin Normal file
View File

@@ -0,0 +1,466 @@
package ease
import "core:math"
import "core:intrinsics"
import "core:time"
@(private) PI_2 :: math.PI / 2
// converted to odin from https://github.com/warrenm/AHEasing
// with additional enum based call
// Modeled after the parabola y = x^2
quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p
}
// Modeled after the parabola y = -x^2 + 2x
quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return -(p * (p - 2))
}
// Modeled after the piecewise quadratic
// y = (1/2)((2x)^2) ; [0, 0.5)
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 2 * p * p;
} else {
return (-2 * p * p) + (4 * p) - 1
}
}
// Modeled after the cubic y = x^3
cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p
}
// Modeled after the cubic y = (x - 1)^3 + 1
cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f + 1
}
// Modeled after the piecewise cubic
// y = (1/2)((2x)^3) ; [0, 0.5)
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 4 * p * p * p
} else {
f := (2 * p) - 2
return 0.5 * f * f * f + 1
}
}
// Modeled after the quartic x^4
quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p * p
}
// Modeled after the quartic y = 1 - (x - 1)^4
quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f * (1 - p) + 1
}
// Modeled after the piecewise quartic
// y = (1/2)((2x)^4) ; [0, 0.5)
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 8 * p * p * p * p
} else {
f := p - 1
return -8 * f * f * f * f + 1
}
}
// Modeled after the quintic y = x^5
quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p * p * p
}
// Modeled after the quintic y = (x - 1)^5 + 1
quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f * f * f + 1
}
// Modeled after the piecewise quintic
// y = (1/2)((2x)^5) ; [0, 0.5)
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 16 * p * p * p * p * p
} else {
f := (2 * p) - 2
return 0.5 * f * f * f * f * f + 1
}
}
// Modeled after quarter-cycle of sine wave
sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin((p - 1) * PI_2) + 1
}
// Modeled after quarter-cycle of sine wave (different phase)
sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(p * PI_2)
}
// Modeled after half sine wave
sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 0.5 * (1 - math.cos(p * math.PI))
}
// Modeled after shifted quadrant IV of unit circle
circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 1 - math.sqrt(1 - (p * p))
}
// Modeled after shifted quadrant II of unit circle
circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sqrt((2 - p) * p)
}
// Modeled after the piecewise circular function
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * (1 - math.sqrt(1 - 4 * (p * p)))
} else {
return 0.5 * (math.sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1)
}
}
// Modeled after the exponential function y = 2^(10(x - 1))
exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p == 0.0 ? p : math.pow(2, 10 * (p - 1))
}
// Modeled after the exponential function y = -2^(-10x) + 1
exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p == 1.0 ? p : 1 - math.pow(2, -10 * p)
}
// Modeled after the piecewise exponential
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p == 0.0 || p == 1.0 {
return p
}
if p < 0.5 {
return 0.5 * math.pow(2, (20 * p) - 10)
} else {
return -0.5 * math.pow(2, (-20 * p) + 10) + 1
}
}
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1))
}
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1
}
// Modeled after the piecewise exponentially-damped sine wave:
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1))
} else {
return 0.5 * (math.sin(-13 * PI_2 * ((2 * p - 1) + 1)) * math.pow(2, -10 * (2 * p - 1)) + 2)
}
}
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p - p * math.sin(p * math.PI)
}
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := 1 - p
return 1 - (f * f * f - f * math.sin(f * math.PI))
}
// Modeled after the piecewise overshooting cubic function:
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
f := 2 * p
return 0.5 * (f * f * f - f * math.sin(f * math.PI))
} else {
f := (1 - (2*p - 1))
return 0.5 * (1 - (f * f * f - f * math.sin(f * math.PI))) + 0.5
}
}
bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 1 - bounce_out(1 - p)
}
bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 4/11.0 {
return (121 * p * p)/16.0
} else if p < 8/11.0 {
return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0
} else if p < 9/10.0 {
return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0
} else {
return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0
}
}
bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * bounce_in(p*2)
} else {
return 0.5 * bounce_out(p * 2 - 1) + 0.5
}
}
// additional enum variant
Ease :: enum {
Linear,
Quadratic_In,
Quadratic_Out,
Quadratic_In_Out,
Cubic_In,
Cubic_Out,
Cubic_In_Out,
Quartic_In,
Quartic_Out,
Quartic_In_Out,
Quintic_In,
Quintic_Out,
Quintic_In_Out,
Sine_In,
Sine_Out,
Sine_In_Out,
Circular_In,
Circular_Out,
Circular_In_Out,
Exponential_In,
Exponential_Out,
Exponential_In_Out,
Elastic_In,
Elastic_Out,
Elastic_In_Out,
Back_In,
Back_Out,
Back_In_Out,
Bounce_In,
Bounce_Out,
Bounce_In_Out,
}
ease :: proc "contextless" (type: Ease, p: $T) -> T
where intrinsics.type_is_float(T) {
switch type {
case .Linear: return p
case .Quadratic_In: return quadratic_in(p)
case .Quadratic_Out: return quadratic_out(p)
case .Quadratic_In_Out: return quadratic_in_out(p)
case .Cubic_In: return cubic_in(p)
case .Cubic_Out: return cubic_out(p)
case .Cubic_In_Out: return cubic_in_out(p)
case .Quartic_In: return quartic_in(p)
case .Quartic_Out: return quartic_out(p)
case .Quartic_In_Out: return quartic_in_out(p)
case .Quintic_In: return quintic_in(p)
case .Quintic_Out: return quintic_out(p)
case .Quintic_In_Out: return quintic_in_out(p)
case .Sine_In: return sine_in(p)
case .Sine_Out: return sine_out(p)
case .Sine_In_Out: return sine_in_out(p)
case .Circular_In: return circular_in(p)
case .Circular_Out: return circular_out(p)
case .Circular_In_Out: return circular_in_out(p)
case .Exponential_In: return exponential_in(p)
case .Exponential_Out: return exponential_out(p)
case .Exponential_In_Out: return exponential_in_out(p)
case .Elastic_In: return elastic_in(p)
case .Elastic_Out: return elastic_out(p)
case .Elastic_In_Out: return elastic_in_out(p)
case .Back_In: return back_in(p)
case .Back_Out: return back_out(p)
case .Back_In_Out: return back_in_out(p)
case .Bounce_In: return bounce_in(p)
case .Bounce_Out: return bounce_out(p)
case .Bounce_In_Out: return bounce_in_out(p)
}
// in case type was invalid
return 0
}
Flux_Map :: struct($T: typeid) {
values: map[^T]Flux_Tween(T),
}
Flux_Tween :: struct($T: typeid) {
value: ^T,
start: T,
diff: T,
goal: T,
// using ticks for timing instead
delay_tick_start: time.Tick,
delay: time.Duration,
duration: time.Duration,
progress: f64,
rate: f64,
type: Ease,
inited: bool,
// callbacks, data can be set, will be pushed to callback
data: rawptr, // by default gets set to value input
on_start: proc(flux: ^Flux_Map(T), data: rawptr),
on_update: proc(flux: ^Flux_Map(T), data: rawptr),
on_complete: proc(flux: ^Flux_Map(T), data: rawptr),
}
// init flux map to a float type and a wanted cap
flux_init :: proc($T: typeid, cap := 8) -> Flux_Map(T) where intrinsics.type_is_float(T) {
return {
make(map[^T]Flux_Tween(T), cap),
}
}
// delete map content
flux_destroy :: proc(flux: Flux_Map($T)) where intrinsics.type_is_float(T) {
delete(flux.values)
}
// clear map content, stops all animations
flux_clear :: proc(flux: ^Flux_Map($T)) where intrinsics.type_is_float(T) {
clear(&flux.values)
}
// append / overwrite existing tween value to parameters
// rest is initialized in flux_tween_init, inside update
// return value can be used to set callbacks
flux_to :: proc(
flux: ^Flux_Map($T),
value: ^f32,
goal: f32,
type: Ease = .Quadratic_Out,
duration: time.Duration = time.Second,
delay: time.Duration = 0,
) -> (tween: ^Flux_Tween(T)) where intrinsics.type_is_float(T) {
if res, ok := &flux.values[value]; ok {
tween = res
} else {
flux.values[value] = {}
tween = &flux.values[value]
}
tween^ = {
value = value,
goal = goal,
duration = duration,
delay = delay,
delay_tick_start = time.tick_now(),
type = type,
data = value,
}
return
}
// init internal properties
flux_tween_init :: proc(tween: ^Flux_Tween($T), duration: time.Duration) where intrinsics.type_is_float(T) {
tween.inited = true
tween.start = tween.value^
tween.diff = tween.goal - tween.value^
s := time.duration_seconds(duration)
tween.rate = duration > 0 ? 1.0 / s : 0
tween.progress = duration > 0 ? 0 : 1
}
// update all tweens, wait for their delay if one exists
// calls callbacks in all stages, when they're filled
// deletes tween from the map after completion
flux_update :: proc(flux: ^Flux_Map($T), dt: f64) where intrinsics.type_is_float(T) {
size := len(flux.values)
now := time.tick_now()
for key, tween in &flux.values {
if tween.delay != 0 {
diff := time.tick_diff(tween.delay_tick_start, now)
// when diff reached delay, stop delaying
if diff > tween.delay {
tween.delay = 0
}
} else {
if !tween.inited {
flux_tween_init(&tween, tween.duration)
if tween.on_start != nil {
tween.on_start(flux, tween.data)
}
}
tween.progress += tween.rate * dt
x := tween.progress >= 1 ? 1 : ease(tween.type, tween.progress)
tween.value^ = tween.start + tween.diff * T(x)
if tween.on_update != nil {
tween.on_update(flux, tween.data)
}
if tween.progress >= 1 {
delete_key(&flux.values, key)
if tween.on_complete != nil {
tween.on_complete(flux, tween.data)
}
}
}
}
}
// stop a specific key inside the map
// returns true when it successfully removed the key
flux_stop :: proc(flux: ^Flux_Map($T), key: ^f32) -> bool where intrinsics.type_is_float(T) {
if key in flux {
delete_key(flux, key)
return true
}
return false
}