big: Add _private_int_div_recursive.

This commit is contained in:
Jeroen van Rijn
2021-08-13 23:45:00 +02:00
parent 37be8d4091
commit dc02566a84
3 changed files with 209 additions and 12 deletions

View File

@@ -206,13 +206,16 @@ demo :: proc() {
a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(a, b, c, d, e, f);
{
SCOPED_TIMING(.rm_trials);
for bits in 0..10242 {
_ = number_of_rabin_miller_trials(bits);
}
power_of_two(a, 14_500);
print("a: ", a);
power_of_two(b, 10_500);
if err := internal_int_divmod(c, d, a, b); err != nil {
fmt.printf("Error: %v\n", err);
}
SCOPED_COUNT_ADD(.rm_trials, 10242);
print("c: ", c);
print("d: ", d);
}
main :: proc() {

View File

@@ -260,6 +260,12 @@ internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context
}
internal_add :: proc { internal_int_add_signed, internal_int_add_digit, };
internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_add(dest, dest, 1);
}
internal_incr :: proc { internal_int_incr, };
/*
Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
Handbook of Applied Cryptography, algorithm 14.9.
@@ -458,6 +464,11 @@ internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := co
internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, };
internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
return #force_inline internal_sub(dest, dest, 1);
}
internal_decr :: proc { internal_int_decr, };
/*
dest = src / 2
dest = src >> 1
@@ -718,8 +729,9 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
return nil;
}
if false && (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
// err = _int_div_recursive(quotient, remainder, numerator, denominator);
if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
err = _private_int_div_recursive(quotient, remainder, numerator, denominator);
// err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
} else {
when true {
err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);

View File

@@ -430,7 +430,7 @@ _private_int_sqr_toom :: proc(dest, src: ^Int, allocator := context.allocator) -
context.allocator = allocator;
S0, a0, a1, a2 := &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(S0, a0, a1, a2);
defer internal_destroy(S0, a0, a1, a2);
/*
Init temps.
@@ -752,6 +752,188 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
return nil;
}
/*
Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from:
Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
Vol. 18. Cambridge University Press, 2010
Available online at https://arxiv.org/pdf/1004.4710
pages 19ff. in the above online document.
*/
_private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
A1, A2, B1, B0, Q1, Q0, R1, R0, t := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer internal_destroy(A1, A2, B1, B0, Q1, Q0, R1, R0, t);
m := a.used - b.used;
k := m / 2;
if m < MUL_KARATSUBA_CUTOFF { return _private_int_div_school(quotient, remainder, a, b); }
if err = internal_init_multi(A1, A2, B1, B0, Q1, Q0, R1, R0, t); err != nil { return err; }
/*
`B1` = `b` / `beta`^`k`, `B0` = `b` % `beta`^`k`
*/
if err = internal_shrmod(B1, B0, b, k * _DIGIT_BITS); err != nil { return err; }
/*
(Q1, R1) = RecursiveDivRem(A / beta^(2k), B1)
*/
if err = internal_shrmod(A1, t, a, 2 * k * _DIGIT_BITS); err != nil { return err; }
if err = _private_div_recursion(Q1, R1, A1, B1); err != nil { return err; }
/*
A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k)
*/
if err = internal_shl_digit(R1, 2 * k); err != nil { return err; }
if err = internal_add(A1, R1, t); err != nil { return err; }
if err = internal_mul(t, Q1, B0); err != nil { return err; }
/*
While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
*/
if internal_cmp(A1, 0) == -1 {
if internal_shl(t, b, k * _DIGIT_BITS); err != nil { return err; }
for {
if err = internal_decr(Q1); err != nil { return err; }
if err = internal_add(A1, A1, t); err != nil { return err; }
if internal_cmp(A1, 0) != -1 { break; }
}
}
/*
(Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1)
*/
if internal_shrmod(A1, t, A1, k * _DIGIT_BITS); err != nil { return err; }
if _private_div_recursion(Q0, R0, A1, B1); err != nil { return err; }
/*
A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0)
*/
if err = internal_shl_digit(R0, k); err != nil { return err; }
if err = internal_add(A2, R0, t); err != nil { return err; }
if err = internal_mul(t, Q0, B0); err != nil { return err; }
if err = internal_sub(A2, A2, t); err != nil { return err; }
/*
While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
*/
for internal_cmp(A2, 0) == -1 {
if err = internal_decr(Q0); err != nil { return err; }
if err = internal_add(A2, A2, b); err != nil { return err; }
}
/*
Return q = (Q1*beta^k) + Q0, r = A2.
*/
if err = internal_shl_digit(Q1, k); err != nil { return err; }
if err = internal_add(quotient, Q1, Q0); err != nil { return err; }
return internal_copy(remainder, A2);
}
_private_int_div_recursive :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
A, B, Q, Q1, R, A_div, A_mod := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer internal_destroy(A, B, Q, Q1, R, A_div, A_mod);
if err = internal_init_multi(A, B, Q, Q1, R, A_div, A_mod); err != nil { return err; }
/*
Most significant bit of a limb.
Assumes _DIGIT_MAX < (sizeof(DIGIT) * sizeof(u8)).
*/
msb := (_DIGIT_MAX + DIGIT(1)) >> 1;
sigma := 0;
msb_b := b.digit[b.used - 1];
for msb_b < msb {
sigma += 1;
msb_b <<= 1;
}
/*
Use that sigma to normalize B.
*/
if err = internal_shl(B, b, sigma); err != nil { return err; }
if err = internal_shl(A, a, sigma); err != nil { return err; }
/*
Fix the sign.
*/
neg := a.sign != b.sign;
A.sign = .Zero_or_Positive; B.sign = .Zero_or_Positive;
/*
If the magnitude of "A" is not more more than twice that of "B" we can work
on them directly, otherwise we need to work at "A" in chunks.
*/
n := B.used;
m := A.used - B.used;
/*
Q = 0. We already ensured that when we called `internal_init_multi`.
*/
for m > n {
/*
(q, r) = RecursiveDivRem(A / (beta^(m-n)), B)
*/
j := (m - n) * _DIGIT_BITS;
if err = internal_shrmod(A_div, A_mod, A, j); err != nil { return err; }
if err = _private_div_recursion(Q1, R, A_div, B); err != nil { return err; }
/*
Q = (Q*beta!(n)) + q
*/
if err = internal_shl(Q, Q, n * _DIGIT_BITS); err != nil { return err; }
if err = internal_add(Q, Q, Q1); err != nil { return err; }
/*
A = (r * beta^(m-n)) + (A % beta^(m-n))
*/
if err = internal_shl(R, R, (m - n) * _DIGIT_BITS); err != nil { return err; }
if err = internal_add(A, R, A_mod); err != nil { return err; }
/*
m = m - n
*/
m -= n;
}
/*
(q, r) = RecursiveDivRem(A, B)
*/
if err = _private_div_recursion(Q1, R, A, B); err != nil { return err; }
/*
Q = (Q * beta^m) + q, R = r
*/
if err = internal_shl(Q, Q, m * _DIGIT_BITS); err != nil { return err; }
if err = internal_add(Q, Q, Q1); err != nil { return err; }
/*
Get sign before writing to dest.
*/
R.sign = .Zero_or_Positive if internal_is_zero(Q) else a.sign;
if quotient != nil {
swap(quotient, Q);
quotient.sign = .Negative if neg else .Zero_or_Positive;
}
if remainder != nil {
/*
De-normalize the remainder.
*/
if err = internal_shrmod(R, nil, R, sigma); err != nil { return err; }
swap(remainder, R);
}
return nil;
}
/*
Slower bit-bang division... also smaller.
*/
@@ -1040,7 +1222,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
*/
_private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
defer internal_destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
ic := #force_inline internal_cmp(a, base);
if ic == -1 || ic == 0 {
@@ -1107,7 +1289,7 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
_private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
x, y, u, v, A, B, C, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(x, y, u, v, A, B, C, D);
defer internal_destroy(x, y, u, v, A, B, C, D);
/*
`b` cannot be negative.
@@ -1254,7 +1436,7 @@ _private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator
_private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
x, y, u, v, B, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(x, y, u, v, B, D);
defer internal_destroy(x, y, u, v, B, D);
sign: Sign;