mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 01:14:40 +00:00
big: Add _private_int_div_recursive.
This commit is contained in:
@@ -206,13 +206,16 @@ demo :: proc() {
|
||||
a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(a, b, c, d, e, f);
|
||||
|
||||
{
|
||||
SCOPED_TIMING(.rm_trials);
|
||||
for bits in 0..10242 {
|
||||
_ = number_of_rabin_miller_trials(bits);
|
||||
}
|
||||
power_of_two(a, 14_500);
|
||||
print("a: ", a);
|
||||
|
||||
power_of_two(b, 10_500);
|
||||
|
||||
if err := internal_int_divmod(c, d, a, b); err != nil {
|
||||
fmt.printf("Error: %v\n", err);
|
||||
}
|
||||
SCOPED_COUNT_ADD(.rm_trials, 10242);
|
||||
print("c: ", c);
|
||||
print("d: ", d);
|
||||
}
|
||||
|
||||
main :: proc() {
|
||||
|
||||
@@ -260,6 +260,12 @@ internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context
|
||||
}
|
||||
internal_add :: proc { internal_int_add_signed, internal_int_add_digit, };
|
||||
|
||||
|
||||
internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
return #force_inline internal_add(dest, dest, 1);
|
||||
}
|
||||
internal_incr :: proc { internal_int_incr, };
|
||||
|
||||
/*
|
||||
Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
|
||||
Handbook of Applied Cryptography, algorithm 14.9.
|
||||
@@ -458,6 +464,11 @@ internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := co
|
||||
|
||||
internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, };
|
||||
|
||||
internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
return #force_inline internal_sub(dest, dest, 1);
|
||||
}
|
||||
internal_decr :: proc { internal_int_decr, };
|
||||
|
||||
/*
|
||||
dest = src / 2
|
||||
dest = src >> 1
|
||||
@@ -718,8 +729,9 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
|
||||
return nil;
|
||||
}
|
||||
|
||||
if false && (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
|
||||
// err = _int_div_recursive(quotient, remainder, numerator, denominator);
|
||||
if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
|
||||
err = _private_int_div_recursive(quotient, remainder, numerator, denominator);
|
||||
// err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
|
||||
} else {
|
||||
when true {
|
||||
err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
|
||||
|
||||
@@ -430,7 +430,7 @@ _private_int_sqr_toom :: proc(dest, src: ^Int, allocator := context.allocator) -
|
||||
context.allocator = allocator;
|
||||
|
||||
S0, a0, a1, a2 := &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(S0, a0, a1, a2);
|
||||
defer internal_destroy(S0, a0, a1, a2);
|
||||
|
||||
/*
|
||||
Init temps.
|
||||
@@ -752,6 +752,188 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
|
||||
return nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from:
|
||||
|
||||
Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
|
||||
Vol. 18. Cambridge University Press, 2010
|
||||
Available online at https://arxiv.org/pdf/1004.4710
|
||||
|
||||
pages 19ff. in the above online document.
|
||||
*/
|
||||
_private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
A1, A2, B1, B0, Q1, Q0, R1, R0, t := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(A1, A2, B1, B0, Q1, Q0, R1, R0, t);
|
||||
|
||||
m := a.used - b.used;
|
||||
k := m / 2;
|
||||
|
||||
if m < MUL_KARATSUBA_CUTOFF { return _private_int_div_school(quotient, remainder, a, b); }
|
||||
|
||||
if err = internal_init_multi(A1, A2, B1, B0, Q1, Q0, R1, R0, t); err != nil { return err; }
|
||||
|
||||
/*
|
||||
`B1` = `b` / `beta`^`k`, `B0` = `b` % `beta`^`k`
|
||||
*/
|
||||
if err = internal_shrmod(B1, B0, b, k * _DIGIT_BITS); err != nil { return err; }
|
||||
|
||||
/*
|
||||
(Q1, R1) = RecursiveDivRem(A / beta^(2k), B1)
|
||||
*/
|
||||
if err = internal_shrmod(A1, t, a, 2 * k * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = _private_div_recursion(Q1, R1, A1, B1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k)
|
||||
*/
|
||||
if err = internal_shl_digit(R1, 2 * k); err != nil { return err; }
|
||||
if err = internal_add(A1, R1, t); err != nil { return err; }
|
||||
if err = internal_mul(t, Q1, B0); err != nil { return err; }
|
||||
|
||||
/*
|
||||
While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
|
||||
*/
|
||||
if internal_cmp(A1, 0) == -1 {
|
||||
if internal_shl(t, b, k * _DIGIT_BITS); err != nil { return err; }
|
||||
|
||||
for {
|
||||
if err = internal_decr(Q1); err != nil { return err; }
|
||||
if err = internal_add(A1, A1, t); err != nil { return err; }
|
||||
if internal_cmp(A1, 0) != -1 { break; }
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
(Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1)
|
||||
*/
|
||||
if internal_shrmod(A1, t, A1, k * _DIGIT_BITS); err != nil { return err; }
|
||||
if _private_div_recursion(Q0, R0, A1, B1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0)
|
||||
*/
|
||||
if err = internal_shl_digit(R0, k); err != nil { return err; }
|
||||
if err = internal_add(A2, R0, t); err != nil { return err; }
|
||||
if err = internal_mul(t, Q0, B0); err != nil { return err; }
|
||||
if err = internal_sub(A2, A2, t); err != nil { return err; }
|
||||
|
||||
/*
|
||||
While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
|
||||
*/
|
||||
for internal_cmp(A2, 0) == -1 {
|
||||
if err = internal_decr(Q0); err != nil { return err; }
|
||||
if err = internal_add(A2, A2, b); err != nil { return err; }
|
||||
}
|
||||
|
||||
/*
|
||||
Return q = (Q1*beta^k) + Q0, r = A2.
|
||||
*/
|
||||
if err = internal_shl_digit(Q1, k); err != nil { return err; }
|
||||
if err = internal_add(quotient, Q1, Q0); err != nil { return err; }
|
||||
|
||||
return internal_copy(remainder, A2);
|
||||
}
|
||||
|
||||
_private_int_div_recursive :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
|
||||
A, B, Q, Q1, R, A_div, A_mod := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer internal_destroy(A, B, Q, Q1, R, A_div, A_mod);
|
||||
|
||||
if err = internal_init_multi(A, B, Q, Q1, R, A_div, A_mod); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Most significant bit of a limb.
|
||||
Assumes _DIGIT_MAX < (sizeof(DIGIT) * sizeof(u8)).
|
||||
*/
|
||||
msb := (_DIGIT_MAX + DIGIT(1)) >> 1;
|
||||
sigma := 0;
|
||||
msb_b := b.digit[b.used - 1];
|
||||
for msb_b < msb {
|
||||
sigma += 1;
|
||||
msb_b <<= 1;
|
||||
}
|
||||
|
||||
/*
|
||||
Use that sigma to normalize B.
|
||||
*/
|
||||
if err = internal_shl(B, b, sigma); err != nil { return err; }
|
||||
if err = internal_shl(A, a, sigma); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Fix the sign.
|
||||
*/
|
||||
neg := a.sign != b.sign;
|
||||
A.sign = .Zero_or_Positive; B.sign = .Zero_or_Positive;
|
||||
|
||||
/*
|
||||
If the magnitude of "A" is not more more than twice that of "B" we can work
|
||||
on them directly, otherwise we need to work at "A" in chunks.
|
||||
*/
|
||||
n := B.used;
|
||||
m := A.used - B.used;
|
||||
|
||||
/*
|
||||
Q = 0. We already ensured that when we called `internal_init_multi`.
|
||||
*/
|
||||
for m > n {
|
||||
/*
|
||||
(q, r) = RecursiveDivRem(A / (beta^(m-n)), B)
|
||||
*/
|
||||
j := (m - n) * _DIGIT_BITS;
|
||||
if err = internal_shrmod(A_div, A_mod, A, j); err != nil { return err; }
|
||||
if err = _private_div_recursion(Q1, R, A_div, B); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Q = (Q*beta!(n)) + q
|
||||
*/
|
||||
if err = internal_shl(Q, Q, n * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = internal_add(Q, Q, Q1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
A = (r * beta^(m-n)) + (A % beta^(m-n))
|
||||
*/
|
||||
if err = internal_shl(R, R, (m - n) * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = internal_add(A, R, A_mod); err != nil { return err; }
|
||||
|
||||
/*
|
||||
m = m - n
|
||||
*/
|
||||
m -= n;
|
||||
}
|
||||
|
||||
/*
|
||||
(q, r) = RecursiveDivRem(A, B)
|
||||
*/
|
||||
if err = _private_div_recursion(Q1, R, A, B); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Q = (Q * beta^m) + q, R = r
|
||||
*/
|
||||
if err = internal_shl(Q, Q, m * _DIGIT_BITS); err != nil { return err; }
|
||||
if err = internal_add(Q, Q, Q1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Get sign before writing to dest.
|
||||
*/
|
||||
R.sign = .Zero_or_Positive if internal_is_zero(Q) else a.sign;
|
||||
|
||||
if quotient != nil {
|
||||
swap(quotient, Q);
|
||||
quotient.sign = .Negative if neg else .Zero_or_Positive;
|
||||
}
|
||||
if remainder != nil {
|
||||
/*
|
||||
De-normalize the remainder.
|
||||
*/
|
||||
if err = internal_shrmod(R, nil, R, sigma); err != nil { return err; }
|
||||
swap(remainder, R);
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Slower bit-bang division... also smaller.
|
||||
*/
|
||||
@@ -1040,7 +1222,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
|
||||
*/
|
||||
_private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
|
||||
bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
|
||||
defer internal_destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
|
||||
|
||||
ic := #force_inline internal_cmp(a, base);
|
||||
if ic == -1 || ic == 0 {
|
||||
@@ -1107,7 +1289,7 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
|
||||
_private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
x, y, u, v, A, B, C, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(x, y, u, v, A, B, C, D);
|
||||
defer internal_destroy(x, y, u, v, A, B, C, D);
|
||||
|
||||
/*
|
||||
`b` cannot be negative.
|
||||
@@ -1254,7 +1436,7 @@ _private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator
|
||||
_private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
||||
context.allocator = allocator;
|
||||
x, y, u, v, B, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(x, y, u, v, B, D);
|
||||
defer internal_destroy(x, y, u, v, B, D);
|
||||
|
||||
sign: Sign;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user