Add regression tests for matrix inverse

This commit is contained in:
Sebastian Pahnke
2024-12-28 10:24:37 +01:00
parent 02a9d8560f
commit ec5ee19c01

View File

@@ -2,6 +2,7 @@
package test_issues
import "core:testing"
import "core:log"
import "core:math/linalg"
import glm "core:math/linalg/glsl"
import hlm "core:math/linalg/hlsl"
@@ -91,4 +92,98 @@ test_adjugate_4x4 :: proc(t: ^testing.T) {
testing.expect_value(t, hlm.determinant(m), -174)
testing.expect_value(t, hlm.adjugate(m) * m, -174 * I)
testing.expect_value(t, m * hlm.adjugate(m), -174 * I)
}
@test
test_inverse_regression_2x2 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[2,2]f32)
m := matrix[2,2]f32 {
-3, 2,
-1, 0,
}
expected := matrix[2,2]f32 {
0.0, -1.0,
1.0/2.0, -3.0/2.0,
}
expect_float_matrix_value(t, linalg.inverse(m), expected)
expect_float_matrix_value(t, linalg.inverse(m) * m, I)
expect_float_matrix_value(t, m * linalg.inverse(m), I)
expect_float_matrix_value(t, glm.inverse(m), expected)
expect_float_matrix_value(t, glm.inverse(m) * m, I)
expect_float_matrix_value(t, m * glm.inverse(m), I)
expect_float_matrix_value(t, hlm.inverse(m), expected)
expect_float_matrix_value(t, hlm.inverse(m) * m, I)
expect_float_matrix_value(t, m * hlm.inverse(m), I)
}
@test
test_inverse_regression_3x3 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[3,3]f32)
m := matrix[3,3]f32 {
-3, 2, -5,
-1, 0, -2,
3, -4, 1,
}
expected := matrix[3,3]f32 {
4.0/3.0, -3.0, 2.0/3.0,
5.0/6.0, -2.0, 1.0/6.0,
-2.0/3.0, 1.0, -1.0/3.0,
}
expect_float_matrix_value(t, linalg.inverse(m), expected)
expect_float_matrix_value(t, linalg.inverse(m) * m, I)
expect_float_matrix_value(t, m * linalg.inverse(m), I)
expect_float_matrix_value(t, glm.inverse(m), expected)
expect_float_matrix_value(t, glm.inverse(m) * m, I)
expect_float_matrix_value(t, m * glm.inverse(m), I)
expect_float_matrix_value(t, hlm.inverse(m), expected)
expect_float_matrix_value(t, hlm.inverse(m) * m, I)
expect_float_matrix_value(t, m * hlm.inverse(m), I)
}
@test
test_inverse_regression_4x4 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[4,4]f32)
m := matrix[4,4]f32 {
-3, 2, -5, 1,
-1, 0, -2, 2,
3, -4, 1, 3,
4, 5, 6, 7,
}
expected := matrix[4,4]f32 {
24.0/29.0, -133.0/87.0, 46.0/87.0, 8.0/87.0,
19.0/58.0, -46.0/87.0, 5.0/174.0, 8.0/87.0,
-35.0/58.0, 71.0/87.0, -55.0/174.0, -1.0/87.0,
-11.0/58.0, 16.0/29.0, -3.0/58.0, 1.0/29.0,
}
expect_float_matrix_value(t, linalg.inverse(m), expected)
expect_float_matrix_value(t, linalg.inverse(m) * m, I)
expect_float_matrix_value(t, m * linalg.inverse(m), I)
expect_float_matrix_value(t, glm.inverse(m), expected)
expect_float_matrix_value(t, glm.inverse(m) * m, I)
expect_float_matrix_value(t, m * glm.inverse(m), I)
expect_float_matrix_value(t, hlm.inverse(m), expected)
expect_float_matrix_value(t, hlm.inverse(m) * m, I)
expect_float_matrix_value(t, m * hlm.inverse(m), I)
}
@(private="file")
expect_float_matrix_value :: proc(t: ^testing.T, value, expected: $M/matrix[$N, N]f32, loc := #caller_location, value_expr := #caller_expression(value)) -> bool {
ok := true
outer: for i in 0..<N {
for j in 0..<N {
diff := abs(value[i, j] - expected[i, j])
if diff > 1e-6 {
ok = false
break outer
}
}
}
if !ok do log.errorf("expected %v to be %v, got %v", value_expr, expected, value, location=loc)
return ok
}