big: Add Frobenius-Underwood.

This commit is contained in:
Jeroen van Rijn
2021-09-03 01:25:18 +02:00
parent 7fa04fa018
commit eecc786bd2
4 changed files with 117 additions and 18 deletions

View File

@@ -1,5 +1,5 @@
@echo off
odin run . -vet
odin run . -vet -define:MATH_BIG_USE_FROBENIUS_TEST=true
set TEST_ARGS=-fast-tests
:set TEST_ARGS=

View File

@@ -84,7 +84,7 @@ print :: proc(name: string, a: ^Int, base := i8(10), print_name := true, newline
}
}
// printf :: fmt.printf;
printf :: fmt.printf;
demo :: proc() {
a, b, c, d, e, f, res := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
@@ -93,16 +93,15 @@ demo :: proc() {
err: Error;
prime: bool;
trials := 1;
set(c, "3317044064679887385961981");
set(a, "3317044064679887385961981"); // Composite: 1287836182261 × 2575672364521
trials := number_of_rabin_miller_trials(internal_count_bits(a));
{
SCOPED_TIMING(.is_prime);
prime, err = internal_int_is_prime(c, trials);
prime, err = internal_int_is_prime(a, trials);
}
//print("prime: ", c);
fmt.printf("%v %v\n", prime, err);
print("Candidate prime: ", a);
fmt.printf("%v Miller-Rabin trials needed.\n", trials);
fmt.printf("Is prime: %v, Error: %v\n", prime, err);
}
main :: proc() {

View File

@@ -2019,8 +2019,18 @@ internal_invmod :: proc{ internal_int_inverse_modulo, };
/*
Helpers to extract values from the `Int`.
*/
internal_int_bitfield_extract_bool :: proc(a: ^Int, offset: int) -> (val: bool, err: Error) {
limb := offset / _DIGIT_BITS;
if limb < 0 || limb >= a.used { return false, .Invalid_Argument; }
i := _WORD(1 << _WORD((offset % _DIGIT_BITS)));
return bool(_WORD(a.digit[limb]) & i), nil;
}
internal_int_bitfield_extract_single :: proc(a: ^Int, offset: int) -> (bit: _WORD, err: Error) {
return #force_inline int_bitfield_extract(a, offset, 1);
limb := offset / _DIGIT_BITS;
if limb < 0 || limb >= a.used { return 0, .Invalid_Argument; }
i := _WORD(1 << _WORD((offset % _DIGIT_BITS)));
return 1 if ((_WORD(a.digit[limb]) & i) != 0) else 0, nil;
}
internal_int_bitfield_extract :: proc(a: ^Int, offset, count: int) -> (res: _WORD, err: Error) #no_bounds_check {

View File

@@ -366,13 +366,7 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
if !miller_rabin_only {
if miller_rabin_trials >= 0 {
when MATH_BIG_USE_FROBENIUS_TEST {
// err = mp_prime_frobenius_underwood(a, &res);
// if ((err != MP_OKAY) && (err != MP_ITER)) {
// goto LBL_B;
// }
// if (!res) {
// goto LBL_B;
// }
if !internal_int_prime_frobenius_underwood(a) or_return { return; }
} else {
// if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
// goto LBL_B;
@@ -506,6 +500,102 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
return true, nil;
}
/*
* floor of positive solution of (2^16) - 1 = (a + 4) * (2 * a + 5)
* TODO: Both values are smaller than N^(1/4), would have to use a bigint
* for `a` instead, but any `a` bigger than about 120 are already so rare that
* it is possible to ignore them and still get enough pseudoprimes.
* But it is still a restriction of the set of available pseudoprimes
* which makes this implementation less secure if used stand-alone.
*/
_FROBENIUS_UNDERWOOD_A :: 32764;
internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.allocator) -> (result: bool, err: Error) {
context.allocator = allocator;
T1z, T2z, Np1z, sz, tz := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer internal_destroy(T1z, T2z, Np1z, sz, tz);
internal_init_multi(T1z, T2z, Np1z, sz, tz) or_return;
a, ap2: int;
frob: for a = 0; a < _FROBENIUS_UNDERWOOD_A; a += 1 {
switch a {
case 2, 4, 7, 8, 10, 14, 18, 23, 26, 28:
continue frob;
}
internal_set(T1z, i32((a * a) - 4));
j := internal_int_kronecker(T1z, N) or_return;
switch j {
case -1: break frob;
case 0: return false, nil;
}
}
// Tell it a composite and set return value accordingly.
if a >= _FROBENIUS_UNDERWOOD_A { return false, .Max_Iterations_Reached; }
// Composite if N and (a+4)*(2*a+5) are not coprime.
internal_set(T1z, u32((a + 4) * ((2 * a) + 5)));
internal_int_gcd_lcm(T1z, nil, T1z, N) or_return;
if !(T1z.used == 1 && T1z.digit[0] == 1) {
// Composite.
return false, nil;
}
ap2 = a + 2;
internal_add(Np1z, N, 1) or_return;
internal_set(sz, 1) or_return;
internal_set(tz, 2) or_return;
for i := internal_count_bits(Np1z) - 2; i >= 0; i -= 1 {
// temp = (sz * (a * sz + 2 * tz)) % N;
// tz = ((tz - sz) * (tz + sz)) % N;
// sz = temp;
internal_int_shl1(T2z, tz) or_return;
// a = 0 at about 50% of the cases (non-square and odd input)
if a != 0 {
internal_mul(T1z, sz, DIGIT(a)) or_return;
internal_add(T2z, T2z, T1z) or_return;
}
internal_mul(T1z, T2z, sz) or_return;
internal_sub(T2z, tz, sz) or_return;
internal_add(sz, sz, tz) or_return;
internal_mul(tz, sz, T2z) or_return;
internal_mod(tz, tz, N) or_return;
internal_mod(sz, T1z, N) or_return;
if bit, _ := internal_int_bitfield_extract_bool(Np1z, i); bit {
// temp = (a+2) * sz + tz
// tz = 2 * tz - sz
// sz = temp
if a == 0 {
internal_int_shl1(T1z, sz) or_return;
} else {
internal_mul(T1z, sz, DIGIT(ap2)) or_return;
}
internal_add(T1z, T1z, tz) or_return;
internal_int_shl1(T2z, tz) or_return;
internal_sub(tz, T2z, sz);
internal_swap(sz, T1z);
}
}
internal_set(T1z, u32((2 * a) + 5)) or_return;
internal_mod(T1z, T1z, N) or_return;
result = internal_is_zero(sz) && internal_eq(tz, T1z);
return;
}
/*
Returns the number of Rabin-Miller trials needed for a given bit size.
@@ -513,7 +603,7 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {
switch {
case bit_size <= 80:
return - 1; /* Use deterministic algorithm for size <= 80 bits */
return -1; /* Use deterministic algorithm for size <= 80 bits */
case bit_size >= 81 && bit_size < 96:
return 37; /* max. error = 2^(-96) */
case bit_size >= 96 && bit_size < 128: