Files
Odin/core/math.odin
Ginger Bill 24ca106521 v0.0.3 Build
2016-11-17 22:58:00 +00:00

374 lines
9.4 KiB
Odin

TAU :: 6.28318530717958647692528676655900576
PI :: 3.14159265358979323846264338327950288
ONE_OVER_TAU :: 0.636619772367581343075535053490057448
ONE_OVER_PI :: 0.159154943091895335768883763372514362
E :: 2.71828182845904523536
SQRT_TWO :: 1.41421356237309504880168872420969808
SQRT_THREE :: 1.73205080756887729352744634150587236
SQRT_FIVE :: 2.23606797749978969640917366873127623
LOG_TWO :: 0.693147180559945309417232121458176568
LOG_TEN :: 2.30258509299404568401799145468436421
EPSILON :: 1.19209290e-7
τ :: TAU
π :: PI
Vec2 :: type {2}f32
Vec3 :: type {3}f32
Vec4 :: type {4}f32
Mat2 :: type [2]Vec2
Mat3 :: type [3]Vec3
Mat4 :: type [4]Vec4
sqrt32 :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32"
sqrt64 :: proc(x: f64) -> f64 #foreign "llvm.sqrt.f64"
sin32 :: proc(x: f32) -> f32 #foreign "llvm.sin.f32"
sin64 :: proc(x: f64) -> f64 #foreign "llvm.sin.f64"
cos32 :: proc(x: f32) -> f32 #foreign "llvm.cos.f32"
cos64 :: proc(x: f64) -> f64 #foreign "llvm.cos.f64"
tan32 :: proc(x: f32) -> f32 #inline { return sin32(x)/cos32(x) }
tan64 :: proc(x: f64) -> f64 #inline { return sin64(x)/cos64(x) }
lerp32 :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t }
lerp64 :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t }
clamp32 :: proc(x, lower, upper: f32) -> f32 { return min(max(x, lower), upper) }
clamp64 :: proc(x, lower, upper: f64) -> f64 { return min(max(x, lower), upper) }
sign32 :: proc(x: f32) -> f32 { if x >= 0 { return +1 } return -1 }
sign64 :: proc(x: f64) -> f64 { if x >= 0 { return +1 } return -1 }
copy_sign32 :: proc(x, y: f32) -> f32 {
ix := x transmute u32
iy := y transmute u32
ix &= 0x7fffffff
ix |= iy & 0x80000000
return ix transmute f32
}
round32 :: proc(x: f32) -> f32 {
if x >= 0 {
return floor32(x + 0.5)
}
return ceil32(x - 0.5)
}
floor32 :: proc(x: f32) -> f32 {
if x >= 0 {
return x as int as f32
}
return (x-0.5) as int as f32
}
ceil32 :: proc(x: f32) -> f32 {
if x < 0 {
return x as int as f32
}
return ((x as int)+1) as f32
}
remainder32 :: proc(x, y: f32) -> f32 {
return x - round32(x/y) * y
}
fmod32 :: proc(x, y: f32) -> f32 {
y = abs(y)
result := remainder32(abs(x), y)
if sign32(result) < 0 {
result += y
}
return copy_sign32(result, x)
}
to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360 }
to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU }
dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y }
dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z }
dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w }
cross3 :: proc(x, y: Vec3) -> Vec3 {
a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1)
b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0)
return a - b
}
vec2_mag :: proc(v: Vec2) -> f32 { return sqrt32(dot2(v, v)) }
vec3_mag :: proc(v: Vec3) -> f32 { return sqrt32(dot3(v, v)) }
vec4_mag :: proc(v: Vec4) -> f32 { return sqrt32(dot4(v, v)) }
vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)} }
vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)} }
vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)} }
vec2_norm0 :: proc(v: Vec2) -> Vec2 {
m := vec2_mag(v)
if m == 0 {
return Vec2{0}
}
return v / Vec2{m}
}
vec3_norm0 :: proc(v: Vec3) -> Vec3 {
m := vec3_mag(v)
if m == 0 {
return Vec3{0}
}
return v / Vec3{m}
}
vec4_norm0 :: proc(v: Vec4) -> Vec4 {
m := vec4_mag(v)
if m == 0 {
return Vec4{0}
}
return v / Vec4{m}
}
mat4_identity :: proc() -> Mat4 {
return Mat4{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
}
}
mat4_transpose :: proc(m: Mat4) -> Mat4 {
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
m[i][j], m[j][i] = m[j][i], m[i][j]
}
}
return m
}
mat4_mul :: proc(a, b: Mat4) -> Mat4 {
c: Mat4
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
c[j][i] = a[0][i]*b[j][0]
+ a[1][i]*b[j][1]
+ a[2][i]*b[j][2]
+ a[3][i]*b[j][3]
}
}
return c
}
mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
return Vec4{
m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w,
m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w,
}
}
mat4_inverse :: proc(m: Mat4) -> Mat4 {
o: Mat4
sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]
sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3]
sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2]
sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3]
sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2]
sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1]
sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3]
sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3]
sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2]
sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3]
sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2]
sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3]
sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1]
sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3]
sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3]
sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2]
sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3]
sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2]
sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1]
o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02)
o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04)
o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05)
o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05)
o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02)
o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04)
o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05)
o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05)
o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08)
o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10)
o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12)
o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12)
o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15)
o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17)
o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18)
o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18)
ood := 1.0 / (m[0][0] * o[0][0] +
m[0][1] * o[0][1] +
m[0][2] * o[0][2] +
m[0][3] * o[0][3])
o[0][0] *= ood
o[0][1] *= ood
o[0][2] *= ood
o[0][3] *= ood
o[1][0] *= ood
o[1][1] *= ood
o[1][2] *= ood
o[1][3] *= ood
o[2][0] *= ood
o[2][1] *= ood
o[2][2] *= ood
o[2][3] *= ood
o[3][0] *= ood
o[3][1] *= ood
o[3][2] *= ood
o[3][3] *= ood
return o
}
mat4_translate :: proc(v: Vec3) -> Mat4 {
m := mat4_identity()
m[3][0] = v.x
m[3][1] = v.y
m[3][2] = v.z
m[3][3] = 1
return m
}
mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
c := cos32(angle_radians)
s := sin32(angle_radians)
a := vec3_norm(v)
t := a * Vec3{1-c}
rot := mat4_identity()
rot[0][0] = c + t.x*a.x
rot[0][1] = 0 + t.x*a.y + s*a.z
rot[0][2] = 0 + t.x*a.z - s*a.y
rot[0][3] = 0
rot[1][0] = 0 + t.y*a.x - s*a.z
rot[1][1] = c + t.y*a.y
rot[1][2] = 0 + t.y*a.z + s*a.x
rot[1][3] = 0
rot[2][0] = 0 + t.z*a.x + s*a.y
rot[2][1] = 0 + t.z*a.y - s*a.x
rot[2][2] = c + t.z*a.z
rot[2][3] = 0
return rot
}
mat4_scale :: proc(m: Mat4, v: Vec3) -> Mat4 {
m[0][0] = v.x
m[1][1] = v.y
m[2][2] = v.z
return m
}
mat4_scalef :: proc(m: Mat4, s: f32) -> Mat4 {
m[0][0] = s
m[1][1] = s
m[2][2] = s
return m
}
mat4_look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
f := vec3_norm(centre - eye)
s := vec3_norm(cross3(f, up))
u := cross3(s, f)
m: Mat4
m[0] = Vec4{+s.x, +s.y, +s.z, 0}
m[1] = Vec4{+u.x, +u.y, +u.z, 0}
m[2] = Vec4{-f.x, -f.y, -f.z, 0}
m[3] = Vec4{dot3(s, eye), dot3(u, eye), dot3(f, eye), 1}
return m
}
mat4_perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
m: Mat4
tan_half_fovy := tan32(0.5 * fovy)
m[0][0] = 1.0 / (aspect*tan_half_fovy)
m[1][1] = 1.0 / (tan_half_fovy)
m[2][2] = -(far + near) / (far - near)
m[2][3] = -1.0
m[3][2] = -2.0*far*near / (far - near)
return m
}
mat4_ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
m := mat4_identity()
m[0][0] = +2.0 / (right - left)
m[1][1] = +2.0 / (top - bottom)
m[2][2] = -2.0 / (far - near)
m[3][0] = -(right + left) / (right - left)
m[3][1] = -(top + bottom) / (top - bottom)
m[3][2] = -(far + near) / (far - near)
return m
}
F32_DIG :: 6
F32_EPSILON :: 1.192092896e-07
F32_GUARD :: 0
F32_MANT_DIG :: 24
F32_MAX :: 3.402823466e+38
F32_MAX_10_EXP :: 38
F32_MAX_EXP :: 128
F32_MIN :: 1.175494351e-38
F32_MIN_10_EXP :: -37
F32_MIN_EXP :: -125
F32_NORMALIZE :: 0
F32_RADIX :: 2
F32_ROUNDS :: 1
F64_DIG :: 15 // # of decimal digits of precision
F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0
F64_MANT_DIG :: 53 // # of bits in mantissa
F64_MAX :: 1.7976931348623158e+308 // max value
F64_MAX_10_EXP :: 308 // max decimal exponent
F64_MAX_EXP :: 1024 // max binary exponent
F64_MIN :: 2.2250738585072014e-308 // min positive value
F64_MIN_10_EXP :: -307 // min decimal exponent
F64_MIN_EXP :: -1021 // min binary exponent
F64_RADIX :: 2 // exponent radix
F64_ROUNDS :: 1 // addition rounding: near