Files
Odin/core/math/cmplx/cmplx.odin
gingerBill 1ecb4aa9aa Begin work on core:math/cmplx
`complex*` types only at the moment, `quaternion*` types coming later
2023-06-28 13:20:23 +01:00

514 lines
12 KiB
Odin

package math_cmplx
import "core:builtin"
import "core:math"
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
abs :: builtin.abs
conj :: builtin.conj
real :: builtin.real
imag :: builtin.imag
jmag :: builtin.jmag
kmag :: builtin.kmag
sin :: proc{
sin_complex128,
}
cos :: proc{
cos_complex128,
}
tan :: proc{
tan_complex128,
}
cot :: proc{
cot_complex128,
}
sinh :: proc{
sinh_complex128,
}
cosh :: proc{
cosh_complex128,
}
tanh :: proc{
tanh_complex128,
}
// sqrt returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt :: proc{
sqrt_complex32,
sqrt_complex64,
sqrt_complex128,
}
ln :: proc{
ln_complex32,
ln_complex64,
ln_complex128,
}
log10 :: proc{
log10_complex32,
log10_complex64,
log10_complex128,
}
exp :: proc{
exp_complex32,
exp_complex64,
exp_complex128,
}
pow :: proc{
pow_complex32,
pow_complex64,
pow_complex128,
}
phase :: proc{
phase_complex32,
phase_complex64,
phase_complex128,
}
polar :: proc{
polar_complex32,
polar_complex64,
polar_complex128,
}
is_inf :: proc{
is_inf_complex32,
is_inf_complex64,
is_inf_complex128,
}
is_nan :: proc{
is_nan_complex32,
is_nan_complex64,
is_nan_complex128,
}
// sqrt_complex32 returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return complex32(sqrt_complex128(complex128(x)))
}
// sqrt_complex64 returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return complex64(sqrt_complex128(complex128(x)))
}
// sqrt_complex128 returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
// Complex square root
//
// DESCRIPTION:
//
// If z = x + iy, r = |z|, then
//
// 1/2
// Re w = [ (r + x)/2 ] ,
//
// 1/2
// Im w = [ (r - x)/2 ] .
//
// Cancellation error in r-x or r+x is avoided by using the
// identity 2 Re w Im w = y.
//
// Note that -w is also a square root of z. The root chosen
// is always in the right half plane and Im w has the same sign as y.
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 25000 3.2e-17 9.6e-18
// IEEE -10,+10 1,000,000 2.9e-16 6.1e-17
if imag(x) == 0 {
// Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero.
if real(x) == 0 {
return complex(0, imag(x))
}
if real(x) < 0 {
return complex(0, math.copy_sign(math.sqrt(-real(x)), imag(x)))
}
return complex(math.sqrt(real(x)), imag(x))
} else if math.is_inf(imag(x), 0) {
return complex(math.inf_f64(1.0), imag(x))
}
if real(x) == 0 {
if imag(x) < 0 {
r := math.sqrt(-0.5 * imag(x))
return complex(r, -r)
}
r := math.sqrt(0.5 * imag(x))
return complex(r, r)
}
a := real(x)
b := imag(x)
scale: f64
// Rescale to avoid internal overflow or underflow.
if abs(a) > 4 || abs(b) > 4 {
a *= 0.25
b *= 0.25
scale = 2
} else {
a *= 1.8014398509481984e16 // 2**54
b *= 1.8014398509481984e16
scale = 7.450580596923828125e-9 // 2**-27
}
r := math.hypot(a, b)
t: f64
if a > 0 {
t = math.sqrt(0.5*r + 0.5*a)
r = scale * abs((0.5*b)/t)
t *= scale
} else {
r = math.sqrt(0.5*r - 0.5*a)
t = scale * abs((0.5*b)/r)
r *= scale
}
if b < 0 {
return complex(t, -r)
}
return complex(t, r)
}
ln_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return complex(math.ln(abs(x)), phase(x))
}
ln_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return complex(math.ln(abs(x)), phase(x))
}
ln_complex128 :: proc "contextless" (x: complex128) -> complex128 {
return complex(math.ln(abs(x)), phase(x))
}
exp_complex32 :: proc "contextless" (x: complex32) -> complex32 {
switch re, im := real(x), imag(x); {
case math.is_inf(re, 0):
switch {
case re > 0 && im == 0:
return x
case math.is_inf(im, 0) || math.is_nan(im):
if re < 0 {
return complex(0, math.copy_sign(0, im))
} else {
return complex(math.inf_f64(1.0), math.nan_f64())
}
}
case math.is_nan(re):
if im == 0 {
return complex(math.nan_f16(), im)
}
}
r := math.exp(real(x))
s, c := math.sincos(imag(x))
return complex(r*c, r*s)
}
exp_complex64 :: proc "contextless" (x: complex64) -> complex64 {
switch re, im := real(x), imag(x); {
case math.is_inf(re, 0):
switch {
case re > 0 && im == 0:
return x
case math.is_inf(im, 0) || math.is_nan(im):
if re < 0 {
return complex(0, math.copy_sign(0, im))
} else {
return complex(math.inf_f64(1.0), math.nan_f64())
}
}
case math.is_nan(re):
if im == 0 {
return complex(math.nan_f32(), im)
}
}
r := math.exp(real(x))
s, c := math.sincos(imag(x))
return complex(r*c, r*s)
}
exp_complex128 :: proc "contextless" (x: complex128) -> complex128 {
switch re, im := real(x), imag(x); {
case math.is_inf(re, 0):
switch {
case re > 0 && im == 0:
return x
case math.is_inf(im, 0) || math.is_nan(im):
if re < 0 {
return complex(0, math.copy_sign(0, im))
} else {
return complex(math.inf_f64(1.0), math.nan_f64())
}
}
case math.is_nan(re):
if im == 0 {
return complex(math.nan_f64(), im)
}
}
r := math.exp(real(x))
s, c := math.sincos(imag(x))
return complex(r*c, r*s)
}
pow_complex32 :: proc "contextless" (x, y: complex32) -> complex32 {
if x == 0 { // Guaranteed also true for x == -0.
if is_nan(y) {
return nan_complex32()
}
r, i := real(y), imag(y)
switch {
case r == 0:
return 1
case r < 0:
if i == 0 {
return complex(math.inf_f16(1), 0)
}
return inf_complex32()
case r > 0:
return 0
}
unreachable()
}
modulus := abs(x)
if modulus == 0 {
return complex(0, 0)
}
r := math.pow(modulus, real(y))
arg := phase(x)
theta := real(y) * arg
if imag(y) != 0 {
r *= math.exp(-imag(y) * arg)
theta += imag(y) * math.ln(modulus)
}
s, c := math.sincos(theta)
return complex(r*c, r*s)
}
pow_complex64 :: proc "contextless" (x, y: complex64) -> complex64 {
if x == 0 { // Guaranteed also true for x == -0.
if is_nan(y) {
return nan_complex64()
}
r, i := real(y), imag(y)
switch {
case r == 0:
return 1
case r < 0:
if i == 0 {
return complex(math.inf_f32(1), 0)
}
return inf_complex64()
case r > 0:
return 0
}
unreachable()
}
modulus := abs(x)
if modulus == 0 {
return complex(0, 0)
}
r := math.pow(modulus, real(y))
arg := phase(x)
theta := real(y) * arg
if imag(y) != 0 {
r *= math.exp(-imag(y) * arg)
theta += imag(y) * math.ln(modulus)
}
s, c := math.sincos(theta)
return complex(r*c, r*s)
}
pow_complex128 :: proc "contextless" (x, y: complex128) -> complex128 {
if x == 0 { // Guaranteed also true for x == -0.
if is_nan(y) {
return nan_complex128()
}
r, i := real(y), imag(y)
switch {
case r == 0:
return 1
case r < 0:
if i == 0 {
return complex(math.inf_f64(1), 0)
}
return inf_complex128()
case r > 0:
return 0
}
unreachable()
}
modulus := abs(x)
if modulus == 0 {
return complex(0, 0)
}
r := math.pow(modulus, real(y))
arg := phase(x)
theta := real(y) * arg
if imag(y) != 0 {
r *= math.exp(-imag(y) * arg)
theta += imag(y) * math.ln(modulus)
}
s, c := math.sincos(theta)
return complex(r*c, r*s)
}
log10_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return math.LN10*ln(x)
}
log10_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return math.LN10*ln(x)
}
log10_complex128 :: proc "contextless" (x: complex128) -> complex128 {
return math.LN10*ln(x)
}
phase_complex32 :: proc "contextless" (x: complex32) -> f16 {
return math.atan2(imag(x), real(x))
}
phase_complex64 :: proc "contextless" (x: complex64) -> f32 {
return math.atan2(imag(x), real(x))
}
phase_complex128 :: proc "contextless" (x: complex128) -> f64 {
return math.atan2(imag(x), real(x))
}
rect_complex32 :: proc "contextless" (r, θ: f16) -> complex32 {
s, c := math.sincos(θ)
return complex(r*c, r*s)
}
rect_complex64 :: proc "contextless" (r, θ: f32) -> complex64 {
s, c := math.sincos(θ)
return complex(r*c, r*s)
}
rect_complex128 :: proc "contextless" (r, θ: f64) -> complex128 {
s, c := math.sincos(θ)
return complex(r*c, r*s)
}
polar_complex32 :: proc "contextless" (x: complex32) -> (r, θ: f16) {
return abs(x), phase(x)
}
polar_complex64 :: proc "contextless" (x: complex64) -> (r, θ: f32) {
return abs(x), phase(x)
}
polar_complex128 :: proc "contextless" (x: complex128) -> (r, θ: f64) {
return abs(x), phase(x)
}
nan_complex32 :: proc "contextless" () -> complex32 {
return complex(math.nan_f16(), math.nan_f16())
}
nan_complex64 :: proc "contextless" () -> complex64 {
return complex(math.nan_f32(), math.nan_f32())
}
nan_complex128 :: proc "contextless" () -> complex128 {
return complex(math.nan_f64(), math.nan_f64())
}
inf_complex32 :: proc "contextless" () -> complex32 {
inf := math.inf_f16(1)
return complex(inf, inf)
}
inf_complex64 :: proc "contextless" () -> complex64 {
inf := math.inf_f32(1)
return complex(inf, inf)
}
inf_complex128 :: proc "contextless" () -> complex128 {
inf := math.inf_f64(1)
return complex(inf, inf)
}
is_inf_complex32 :: proc "contextless" (x: complex32) -> bool {
return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
}
is_inf_complex64 :: proc "contextless" (x: complex64) -> bool {
return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
}
is_inf_complex128 :: proc "contextless" (x: complex128) -> bool {
return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
}
is_nan_complex32 :: proc "contextless" (x: complex32) -> bool {
if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
return false
}
return math.is_nan(real(x)) || math.is_nan(imag(x))
}
is_nan_complex64 :: proc "contextless" (x: complex64) -> bool {
if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
return false
}
return math.is_nan(real(x)) || math.is_nan(imag(x))
}
is_nan_complex128 :: proc "contextless" (x: complex128) -> bool {
if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
return false
}
return math.is_nan(real(x)) || math.is_nan(imag(x))
}