Files
Odin/core/math/big/test.py
2021-09-01 19:13:47 +02:00

716 lines
22 KiB
Python

#
# Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
# Made available under Odin's BSD-3 license.
#
# A BigInt implementation in Odin.
# For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
# The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
#
from ctypes import *
from random import *
import math
import os
import platform
import time
import gc
from enum import Enum
import argparse
parser = argparse.ArgumentParser(
description = "Odin core:math/big test suite",
epilog = "By default we run regression and random tests with preset parameters.",
formatter_class = argparse.ArgumentDefaultsHelpFormatter,
)
#
# Normally, we report the number of passes and fails. With this option set, we exit at first fail.
#
parser.add_argument(
"-exit-on-fail",
help = "Exit when a test fails",
action = "store_true",
)
#
# We skip randomized tests altogether if this is set.
#
no_random = parser.add_mutually_exclusive_group()
no_random.add_argument(
"-no-random",
help = "No random tests",
action = "store_true",
)
#
# Normally we run a given number of cycles on each test.
# Timed tests budget 1 second per 20_000 bits instead.
#
# For timed tests we budget a second per `n` bits and iterate until we hit that time.
#
timed_or_fast = no_random.add_mutually_exclusive_group()
timed_or_fast.add_argument(
"-timed",
type = bool,
default = False,
help = "Timed tests instead of a preset number of iterations.",
)
parser.add_argument(
"-timed-bits",
type = int,
metavar = "BITS",
default = 20_000,
help = "Timed tests. Every `BITS` worth of input is given a second of running time.",
)
#
# For normal tests (non-timed), `-fast-tests` cuts down on the number of iterations.
#
timed_or_fast.add_argument(
"-fast-tests",
help = "Cut down on the number of iterations of each test",
action = "store_true",
)
args = parser.parse_args()
EXIT_ON_FAIL = args.exit_on_fail
#
# How many iterations of each random test do we want to run?
#
BITS_AND_ITERATIONS = [
( 120, 10_000),
( 1_200, 1_000),
( 4_096, 100),
(12_000, 10),
]
if args.fast_tests:
for k in range(len(BITS_AND_ITERATIONS)):
b, i = BITS_AND_ITERATIONS[k]
BITS_AND_ITERATIONS[k] = (b, i // 10 if i >= 100 else 5)
if args.no_random:
BITS_AND_ITERATIONS = []
#
# Where is the DLL? If missing, build using: `odin build . -build-mode:shared`
#
if platform.system() == "Windows":
LIB_PATH = os.getcwd() + os.sep + "big.dll"
elif platform.system() == "Linux":
LIB_PATH = os.getcwd() + os.sep + "big.so"
elif platform.system() == "Darwin":
LIB_PATH = os.getcwd() + os.sep + "big.dylib"
else:
print("Platform is unsupported.")
exit(1)
TOTAL_TIME = 0
UNTIL_TIME = 0
UNTIL_ITERS = 0
def we_iterate():
if args.timed:
return TOTAL_TIME < UNTIL_TIME
else:
global UNTIL_ITERS
UNTIL_ITERS -= 1
return UNTIL_ITERS != -1
#
# Error enum values
#
class Error(Enum):
Okay = 0
Out_Of_Memory = 1
Invalid_Pointer = 2
Invalid_Argument = 3
Unknown_Error = 4
Max_Iterations_Reached = 5
Buffer_Overflow = 6
Integer_Overflow = 7
Division_by_Zero = 8
Math_Domain_Error = 9
Unimplemented = 127
#
# Disable garbage collection
#
gc.disable()
#
# Set up exported procedures
#
try:
l = cdll.LoadLibrary(LIB_PATH)
except:
print("Couldn't find or load " + LIB_PATH + ".")
exit(1)
def load(export_name, args, res):
export_name.argtypes = args
export_name.restype = res
return export_name
#
# Result values will be passed in a struct { res: cstring, err: Error }
#
class Res(Structure):
_fields_ = [("res", c_char_p), ("err", c_uint64)]
initialize_constants = load(l.test_initialize_constants, [], c_uint64)
print("initialize_constants: ", initialize_constants())
error_string = load(l.test_error_string, [c_byte], c_char_p)
add = load(l.test_add, [c_char_p, c_char_p ], Res)
sub = load(l.test_sub, [c_char_p, c_char_p ], Res)
mul = load(l.test_mul, [c_char_p, c_char_p ], Res)
sqr = load(l.test_sqr, [c_char_p ], Res)
div = load(l.test_div, [c_char_p, c_char_p ], Res)
# Powers and such
int_log = load(l.test_log, [c_char_p, c_longlong], Res)
int_pow = load(l.test_pow, [c_char_p, c_longlong], Res)
int_sqrt = load(l.test_sqrt, [c_char_p ], Res)
int_root_n = load(l.test_root_n, [c_char_p, c_longlong], Res)
# Logical operations
int_shl_digit = load(l.test_shl_digit, [c_char_p, c_longlong], Res)
int_shr_digit = load(l.test_shr_digit, [c_char_p, c_longlong], Res)
int_shl = load(l.test_shl, [c_char_p, c_longlong], Res)
int_shr = load(l.test_shr, [c_char_p, c_longlong], Res)
int_shr_signed = load(l.test_shr_signed, [c_char_p, c_longlong], Res)
int_factorial = load(l.test_factorial, [c_uint64 ], Res)
int_gcd = load(l.test_gcd, [c_char_p, c_char_p ], Res)
int_lcm = load(l.test_lcm, [c_char_p, c_char_p ], Res)
is_square = load(l.test_is_square, [c_char_p ], Res)
def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expected_result = "", radix=16):
passed = True
r = None
err = Error(res.err)
if err != expected_error:
error_loc = res.res.decode('utf-8')
error = "{}: {} in '{}'".format(test_name, err, error_loc)
if len(param):
error += " with params {}".format(param)
print(error, flush=True)
passed = False
elif err == Error.Okay:
r = None
try:
r = res.res.decode('utf-8')
r = int(res.res, radix)
except:
pass
if r != expected_result:
error = "{}: Result was '{}', expected '{}'".format(test_name, r, expected_result)
if len(param):
error += " with params {}".format(param)
print(error, flush=True)
passed = False
if EXIT_ON_FAIL and not passed: exit(res.err)
return passed
def arg_to_odin(a):
if a >= 0:
s = hex(a)[2:]
else:
s = '-' + hex(a)[3:]
return s.encode('utf-8')
def test_add(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = add(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a + b
return test("test_add", res, [a, b], expected_error, expected_result)
def test_sub(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = sub(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a - b
return test("test_sub", res, [a, b], expected_error, expected_result)
def test_mul(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
try:
res = mul(*args)
except OSError as e:
print("{} while trying to multiply {} x {}.".format(e, a, b))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
expected_result = a * b
return test("test_mul", res, [a, b], expected_error, expected_result)
def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a)]
try:
res = sqr(*args)
except OSError as e:
print("{} while trying to square {}.".format(e, a))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
expected_result = a * a
return test("test_sqr", res, [a], expected_error, expected_result)
def test_div(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
try:
res = div(*args)
except OSError as e:
print("{} while trying divide to {} / {}.".format(e, a, b))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
#
# We don't round the division results, so if one component is negative, we're off by one.
#
if a < 0 and b > 0:
expected_result = int(-(abs(a) // b))
elif b < 0 and a > 0:
expected_result = int(-(a // abs((b))))
else:
expected_result = a // b if b != 0 else None
return test("test_div", res, [a, b], expected_error, expected_result)
def test_log(a = 0, base = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), base]
res = int_log(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = int(math.log(a, base))
return test("test_log", res, [a, base], expected_error, expected_result)
def test_pow(base = 0, power = 0, expected_error = Error.Okay):
args = [arg_to_odin(base), power]
res = int_pow(*args)
expected_result = None
if expected_error == Error.Okay:
if power < 0:
expected_result = 0
else:
# NOTE(Jeroen): Don't use `math.pow`, it's a floating point approximation.
# Use built-in `pow` or `a**b` instead.
expected_result = pow(base, power)
return test("test_pow", res, [base, power], expected_error, expected_result)
def test_sqrt(number = 0, expected_error = Error.Okay):
args = [arg_to_odin(number)]
try:
res = int_sqrt(*args)
except OSError as e:
print("{} while trying to sqrt {}.".format(e, number))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
if number < 0:
expected_result = 0
else:
expected_result = int(math.isqrt(number))
return test("test_sqrt", res, [number], expected_error, expected_result)
def root_n(number, root):
u, s = number, number + 1
while u < s:
s = u
t = (root-1) * s + number // pow(s, root - 1)
u = t // root
return s
def test_root_n(number = 0, root = 0, expected_error = Error.Okay):
args = [arg_to_odin(number), root]
res = int_root_n(*args)
expected_result = None
if expected_error == Error.Okay:
if number < 0:
expected_result = 0
else:
expected_result = root_n(number, root)
return test("test_root_n", res, [number, root], expected_error, expected_result)
def test_shl_digit(a = 0, digits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), digits]
res = int_shl_digit(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a << (digits * 60)
return test("test_shl_digit", res, [a, digits], expected_error, expected_result)
def test_shr_digit(a = 0, digits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), digits]
res = int_shr_digit(*args)
expected_result = None
if expected_error == Error.Okay:
if a < 0:
# Don't pass negative numbers. We have a shr_signed.
return False
else:
expected_result = a >> (digits * 60)
return test("test_shr_digit", res, [a, digits], expected_error, expected_result)
def test_shl(a = 0, bits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), bits]
res = int_shl(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a << bits
return test("test_shl", res, [a, bits], expected_error, expected_result)
def test_shr(a = 0, bits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), bits]
res = int_shr(*args)
expected_result = None
if expected_error == Error.Okay:
if a < 0:
# Don't pass negative numbers. We have a shr_signed.
return False
else:
expected_result = a >> bits
return test("test_shr", res, [a, bits], expected_error, expected_result)
def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), bits]
res = int_shr_signed(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a >> bits
return test("test_shr_signed", res, [a, bits], expected_error, expected_result)
def test_factorial(number = 0, expected_error = Error.Okay):
print("Factorial:", number)
args = [number]
try:
res = int_factorial(*args)
except OSError as e:
print("{} while trying to factorial {}.".format(e, number))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
expected_result = math.factorial(number)
return test("test_factorial", res, [number], expected_error, expected_result)
def test_gcd(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = int_gcd(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = math.gcd(a, b)
return test("test_gcd", res, [a, b], expected_error, expected_result)
def test_lcm(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = int_lcm(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = math.lcm(a, b)
return test("test_lcm", res, [a, b], expected_error, expected_result)
def test_is_square(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a)]
res = is_square(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = str(math.isqrt(a) ** 2 == a) if a > 0 else "False"
return test("test_is_square", res, [a], expected_error, expected_result)
# TODO(Jeroen): Make sure tests cover edge cases, fast paths, and so on.
#
# The last two arguments in tests are the expected error and expected result.
#
# The expected error defaults to None.
# By default the Odin implementation will be tested against the Python one.
# You can override that by supplying an expected result as the last argument instead.
TESTS = {
test_add: [
[ 1234, 5432],
],
test_sub: [
[ 1234, 5432],
],
test_mul: [
[ 1234, 5432],
[ 0xd3b4e926aaba3040e1c12b5ea553b5, 0x1a821e41257ed9281bee5bc7789ea7 ],
[ 1 << 21_105, 1 << 21_501 ],
],
test_sqr: [
[ 5432],
[ 0xd3b4e926aaba3040e1c12b5ea553b5 ],
],
test_div: [
[ 54321, 12345],
[ 55431, 0, Error.Division_by_Zero],
[ 12980742146337069150589594264770969721, 4611686018427387904 ],
[ 831956404029821402159719858789932422, 243087903122332132 ],
],
test_log: [
[ 3192, 1, Error.Invalid_Argument],
[ -1234, 2, Error.Math_Domain_Error],
[ 0, 2, Error.Math_Domain_Error],
[ 1024, 2],
],
test_pow: [
[ 0, -1, Error.Math_Domain_Error ], # Math
[ 0, 0 ], # 1
[ 0, 2 ], # 0
[ 42, -1,], # 0
[ 42, 1 ], # 1
[ 42, 0 ], # 42
[ 42, 2 ], # 42*42
],
test_sqrt: [
[ -1, Error.Invalid_Argument, ],
[ 42, Error.Okay, ],
[ 12345678901234567890, Error.Okay, ],
[ 1298074214633706907132624082305024, Error.Okay, ],
[ 686885735734829009541949746871140768343076607029752932751182108475420900392874228486622313727012705619148037570309621219533087263900443932890792804879473795673302686046941536636874184361869252299636701671980034458333859202703255467709267777184095435235980845369829397344182319113372092844648570818726316581751114346501124871729572474923695509057166373026411194094493240101036672016770945150422252961487398124677567028263059046193391737576836378376192651849283925197438927999526058932679219572030021792914065825542626400207956134072247020690107136531852625253942429167557531123651471221455967386267137846791963149859804549891438562641323068751514370656287452006867713758971418043865298618635213551059471668293725548570452377976322899027050925842868079489675596835389444833567439058609775325447891875359487104691935576723532407937236505941186660707032433807075470656782452889754501872408562496805517394619388777930253411467941214807849472083814447498068636264021405175653742244368865090604940094889189800007448083930490871954101880815781177612910234741529950538835837693870921008635195545246771593130784786737543736434086434015200264933536294884482218945403958647118802574342840790536176272341586020230110889699633073513016344826709214, Error.Okay, ],
],
test_root_n: [
[ 1298074214633706907132624082305024, 2, Error.Okay, ],
],
test_shl_digit: [
[ 3192, 1 ],
[ 1298074214633706907132624082305024, 2 ],
[ 1024, 3 ],
],
test_shr_digit: [
[ 3680125442705055547392, 1 ],
[ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
[ 219504133884436710204395031992179571, 2 ],
],
test_shl: [
[ 3192, 1 ],
[ 1298074214633706907132624082305024, 2 ],
[ 1024, 3 ],
],
test_shr: [
[ 3680125442705055547392, 1 ],
[ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
[ 219504133884436710204395031992179571, 2 ],
],
test_shr_signed: [
[ -611105530635358368578155082258244262, 12 ],
[ -149195686190273039203651143129455, 12 ],
[ 611105530635358368578155082258244262, 12 ],
[ 149195686190273039203651143129455, 12 ],
],
test_factorial: [
[ 6_000 ], # Regular factorial, see cutoff in common.odin.
[ 12_345 ], # Binary split factorial
],
test_gcd: [
[ 23, 25, ],
[ 125, 25, ],
[ 125, 0, ],
[ 0, 0, ],
[ 0, 125,],
],
test_lcm: [
[ 23, 25,],
[ 125, 25, ],
[ 125, 0, ],
[ 0, 0, ],
[ 0, 125,],
],
test_is_square: [
[ 12, ],
[ 92232459121502451677697058974826760244863271517919321608054113675118660929276431348516553336313179167211015633639725554914519355444316239500734169769447134357534241879421978647995614218985202290368055757891124109355450669008628757662409138767505519391883751112010824030579849970582074544353971308266211776494228299586414907715854328360867232691292422194412634523666770452490676515117702116926803826546868467146319938818238521874072436856528051486567230096290549225463582766830777324099589751817442141036031904145041055454639783559905920619197290800070679733841430619962318433709503256637256772215111521321630777950145713049902839937043785039344243357384899099910837463164007565230287809026956254332260375327814271845678201, ]
],
}
if not args.fast_tests:
TESTS[test_factorial].append(
# This one on its own takes around 800ms, so we exclude it for FAST_TESTS
[ 10_000 ],
)
total_passes = 0
total_failures = 0
#
# test_shr_signed also tests shr, so we're not going to test shr randomly.
#
RANDOM_TESTS = [
test_add, test_sub, test_mul, test_sqr, test_div,
test_log, test_pow, test_sqrt, test_root_n,
test_shl_digit, test_shr_digit, test_shl, test_shr_signed,
test_gcd, test_lcm, test_is_square,
]
SKIP_LARGE = [
test_pow, test_root_n, # test_gcd,
]
SKIP_LARGEST = []
# Untimed warmup.
for test_proc in TESTS:
for t in TESTS[test_proc]:
res = test_proc(*t)
if __name__ == '__main__':
print("\n---- math/big tests ----")
print()
max_name = 0
for test_proc in TESTS:
max_name = max(max_name, len(test_proc.__name__))
fmt_string = "{name:>{max_name}}: {count_pass:7,} passes and {count_fail:7,} failures in {timing:9.3f} ms."
fmt_string = fmt_string.replace("{max_name}", str(max_name))
for test_proc in TESTS:
count_pass = 0
count_fail = 0
TIMINGS = {}
for t in TESTS[test_proc]:
start = time.perf_counter()
res = test_proc(*t)
diff = time.perf_counter() - start
TOTAL_TIME += diff
if test_proc not in TIMINGS:
TIMINGS[test_proc] = diff
else:
TIMINGS[test_proc] += diff
if res:
count_pass += 1
total_passes += 1
else:
count_fail += 1
total_failures += 1
print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
for BITS, ITERATIONS in BITS_AND_ITERATIONS:
print()
print("---- math/big with two random {bits:,} bit numbers ----".format(bits=BITS))
print()
#
# We've already tested up to the 10th root.
#
TEST_ROOT_N_PARAMS = [2, 3, 4, 5, 6]
for test_proc in RANDOM_TESTS:
if BITS > 1_200 and test_proc in SKIP_LARGE: continue
if BITS > 4_096 and test_proc in SKIP_LARGEST: continue
count_pass = 0
count_fail = 0
TIMINGS = {}
UNTIL_ITERS = ITERATIONS
if test_proc == test_root_n and BITS == 1_200:
UNTIL_ITERS /= 10
UNTIL_TIME = TOTAL_TIME + BITS / args.timed_bits
# We run each test for a second per 20k bits
index = 0
while we_iterate():
a = randint(-(1 << BITS), 1 << BITS)
b = randint(-(1 << BITS), 1 << BITS)
if test_proc == test_div:
# We've already tested division by zero above.
bits = int(BITS * 0.6)
b = randint(-(1 << bits), 1 << bits)
if b == 0:
b == 42
elif test_proc == test_log:
# We've already tested log's domain errors.
a = randint(1, 1 << BITS)
b = randint(2, 1 << 60)
elif test_proc == test_pow:
b = randint(1, 10)
elif test_proc == test_sqrt:
a = randint(1, 1 << BITS)
b = Error.Okay
elif test_proc == test_root_n:
a = randint(1, 1 << BITS)
b = TEST_ROOT_N_PARAMS[index]
index = (index + 1) % len(TEST_ROOT_N_PARAMS)
elif test_proc == test_shl_digit:
b = randint(0, 10);
elif test_proc == test_shr_digit:
a = abs(a)
b = randint(0, 10);
elif test_proc == test_shl:
b = randint(0, min(BITS, 120))
elif test_proc == test_shr_signed:
b = randint(0, min(BITS, 120))
elif test_proc == test_is_square:
a = randint(0, 1 << BITS)
else:
b = randint(0, 1 << BITS)
res = None
start = time.perf_counter()
res = test_proc(a, b)
diff = time.perf_counter() - start
TOTAL_TIME += diff
if test_proc not in TIMINGS:
TIMINGS[test_proc] = diff
else:
TIMINGS[test_proc] += diff
if res:
count_pass += 1; total_passes += 1
else:
count_fail += 1; total_failures += 1
print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
print()
print("---- THE END ----")
print()
print(fmt_string.format(name="total", count_pass=total_passes, count_fail=total_failures, timing=TOTAL_TIME * 1_000))
if total_failures:
exit(1)