mirror of
https://github.com/libsdl-org/SDL.git
synced 2025-09-05 19:08:12 +00:00
Gyro instrumentation for test controller (#13287)
This adds several minor changes to the gyro instruments. * The HID Sensor Time display is now throttled to 10hz. * Calibration for the gyro is now time based, not sample count based. Different polling rates will have drift calibrated over the same space of time. * Pitch/Yaw/Roll readout: Yaw is prioritized, and then pitch, and then roll. This gives a more human-readable pitch/yaw/roll display, closely matching game engines. * Pitch/Yaw/Roll text is colorized to match the axes in the 3D gizmo. * Added set of axes to the 3D gizmo to show the "Left Hand Space" positive axis directions.
This commit is contained in:

committed by
GitHub

parent
89eef1bd34
commit
e960bf6904
@@ -101,8 +101,9 @@ static SDL_FPoint ProjectVec3ToRect(const Vector3 *v, const SDL_FRect *rect)
|
||||
float fovScaleX = fovScaleY * aspect;
|
||||
|
||||
float relZ = cameraZ - v->z;
|
||||
if (relZ < 0.01f)
|
||||
if (relZ < 0.01f) {
|
||||
relZ = 0.01f; /* Prevent division by 0 or negative depth */
|
||||
}
|
||||
|
||||
float ndc_x = (v->x / relZ) / fovScaleX;
|
||||
float ndc_y = (v->y / relZ) / fovScaleY;
|
||||
@@ -207,6 +208,39 @@ void DrawGyroDebugCircle(SDL_Renderer *renderer, const Quaternion *orientation,
|
||||
SDL_SetRenderDrawColor(renderer, r, g, b, a);
|
||||
}
|
||||
|
||||
|
||||
void DrawGyroDebugAxes(SDL_Renderer *renderer, const Quaternion *orientation, const SDL_FRect *bounds)
|
||||
{
|
||||
/* Store current color */
|
||||
Uint8 r, g, b, a;
|
||||
SDL_GetRenderDrawColor(renderer, &r, &g, &b, &a);
|
||||
|
||||
Vector3 origin = { 0.0f, 0.0f, 0.0f };
|
||||
|
||||
Vector3 right = { 1.0f, 0.0f, 0.0f };
|
||||
Vector3 up = { 0.0f, 1.0f, 0.0f };
|
||||
Vector3 back = { 0.0f, 0.0f, 1.0f };
|
||||
|
||||
Vector3 world_right = RotateVectorByQuaternion(&right, orientation);
|
||||
Vector3 world_up = RotateVectorByQuaternion(&up, orientation);
|
||||
Vector3 world_back = RotateVectorByQuaternion(&back, orientation);
|
||||
|
||||
SDL_FPoint origin_screen = ProjectVec3ToRect(&origin, bounds);
|
||||
SDL_FPoint right_screen = ProjectVec3ToRect(&world_right, bounds);
|
||||
SDL_FPoint up_screen = ProjectVec3ToRect(&world_up, bounds);
|
||||
SDL_FPoint back_screen = ProjectVec3ToRect(&world_back, bounds);
|
||||
|
||||
SDL_SetRenderDrawColor(renderer, GYRO_COLOR_RED);
|
||||
SDL_RenderLine(renderer, origin_screen.x, origin_screen.y, right_screen.x, right_screen.y);
|
||||
SDL_SetRenderDrawColor(renderer, GYRO_COLOR_GREEN);
|
||||
SDL_RenderLine(renderer, origin_screen.x, origin_screen.y, up_screen.x, up_screen.y);
|
||||
SDL_SetRenderDrawColor(renderer, GYRO_COLOR_BLUE);
|
||||
SDL_RenderLine(renderer, origin_screen.x, origin_screen.y, back_screen.x, back_screen.y);
|
||||
|
||||
/* Restore current color */
|
||||
SDL_SetRenderDrawColor(renderer, r, g, b, a);
|
||||
}
|
||||
|
||||
void DrawAccelerometerDebugArrow(SDL_Renderer *renderer, const Quaternion *gyro_quaternion, const float *accel_data, const SDL_FRect *bounds)
|
||||
{
|
||||
/* Store current color */
|
||||
@@ -990,6 +1024,8 @@ struct GyroDisplay
|
||||
/* This part displays extra info from the IMUstate in order to figure out actual polling rates. */
|
||||
float gyro_drift_solution[3];
|
||||
int reported_sensor_rate_hz; /*hz - comes from HIDsdl implementation. Could be fixed, platform time, or true sensor time*/
|
||||
Uint64 next_reported_sensor_time; /* SDL ticks used to throttle the display */
|
||||
|
||||
int estimated_sensor_rate_hz; /*hz - our estimation of the actual polling rate by observing packets received*/
|
||||
float euler_displacement_angles[3]; /* pitch, yaw, roll */
|
||||
Quaternion gyro_quaternion; /* Rotation since startup/reset, comprised of each gyro speed packet times sensor delta time. */
|
||||
@@ -1009,7 +1045,8 @@ GyroDisplay *CreateGyroDisplay(SDL_Renderer *renderer)
|
||||
SDL_zeroa(ctx->gyro_drift_solution);
|
||||
Quaternion quat_identity = { 0.0f, 0.0f, 0.0f, 1.0f };
|
||||
ctx->gyro_quaternion = quat_identity;
|
||||
|
||||
ctx->reported_sensor_rate_hz = 0;
|
||||
ctx->next_reported_sensor_time = 0;
|
||||
ctx->reset_gyro_button = CreateGamepadButton(renderer, "Reset View");
|
||||
ctx->calibrate_gyro_button = CreateGamepadButton(renderer, "Recalibrate Drift");
|
||||
}
|
||||
@@ -1024,7 +1061,6 @@ void SetGyroDisplayArea(GyroDisplay *ctx, const SDL_FRect *area)
|
||||
}
|
||||
|
||||
SDL_copyp(&ctx->area, area);
|
||||
|
||||
/* Place the reset button to the bottom right of the gyro display area.*/
|
||||
SDL_FRect reset_button_area;
|
||||
reset_button_area.w = SDL_max(MINIMUM_BUTTON_WIDTH, GetGamepadButtonLabelWidth(ctx->reset_gyro_button) + 2 * BUTTON_PADDING);
|
||||
@@ -1340,12 +1376,17 @@ void SetGamepadDisplayIMUValues(GyroDisplay *ctx, float *gyro_drift_solution, fl
|
||||
return;
|
||||
}
|
||||
|
||||
const int SENSOR_UPDATE_INTERVAL_MS = 100;
|
||||
Uint64 now = SDL_GetTicks();
|
||||
if (now > ctx->next_reported_sensor_time) {
|
||||
ctx->estimated_sensor_rate_hz = estimated_sensor_rate_hz;
|
||||
if (reported_senor_rate_hz != 0) {
|
||||
ctx->reported_sensor_rate_hz = reported_senor_rate_hz;
|
||||
}
|
||||
ctx->next_reported_sensor_time = now + SENSOR_UPDATE_INTERVAL_MS;
|
||||
}
|
||||
|
||||
SDL_memcpy(ctx->gyro_drift_solution, gyro_drift_solution, sizeof(ctx->gyro_drift_solution));
|
||||
ctx->estimated_sensor_rate_hz = estimated_sensor_rate_hz;
|
||||
|
||||
if (reported_senor_rate_hz != 0)
|
||||
ctx->reported_sensor_rate_hz = reported_senor_rate_hz;
|
||||
|
||||
SDL_memcpy(ctx->euler_displacement_angles, euler_displacement_angles, sizeof(ctx->euler_displacement_angles));
|
||||
ctx->gyro_quaternion = *gyro_quaternion;
|
||||
ctx->drift_calibration_progress_frac = drift_calibration_progress_frac;
|
||||
@@ -1637,7 +1678,7 @@ void RenderGamepadDisplay(GamepadDisplay *ctx, SDL_Gamepad *gamepad)
|
||||
SDLTest_DrawString(ctx->renderer, x + center - SDL_strlen(text) * FONT_CHARACTER_SIZE, y, text);
|
||||
SDL_snprintf(text, sizeof(text), "[%.2f,%.2f,%.2f]%s/s", ctx->gyro_data[0] * RAD_TO_DEG, ctx->gyro_data[1] * RAD_TO_DEG, ctx->gyro_data[2] * RAD_TO_DEG, DEGREE_UTF8);
|
||||
SDLTest_DrawString(ctx->renderer, x + center + 2.0f, y, text);
|
||||
|
||||
|
||||
|
||||
/* Display the testcontroller tool's evaluation of drift. This is also useful to get an average rate of turn in calibrated turntable tests. */
|
||||
if (ctx->gyro_drift_correction_data[0] != 0.0f && ctx->gyro_drift_correction_data[2] != 0.0f && ctx->gyro_drift_correction_data[2] != 0.0f )
|
||||
@@ -1648,10 +1689,7 @@ void RenderGamepadDisplay(GamepadDisplay *ctx, SDL_Gamepad *gamepad)
|
||||
SDL_snprintf(text, sizeof(text), "[%.2f,%.2f,%.2f]%s/s", ctx->gyro_drift_correction_data[0] * RAD_TO_DEG, ctx->gyro_drift_correction_data[1] * RAD_TO_DEG, ctx->gyro_drift_correction_data[2] * RAD_TO_DEG, DEGREE_UTF8);
|
||||
SDLTest_DrawString(ctx->renderer, x + center + 2.0f, y, text);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
SDL_free(mapping);
|
||||
@@ -1797,7 +1835,6 @@ void RenderGyroDriftCalibrationButton(GyroDisplay *ctx, GamepadDisplay *gamepad_
|
||||
|
||||
/* Set the color based on the drift calibration progress fraction */
|
||||
SDL_SetRenderDrawColor(ctx->renderer, GYRO_COLOR_GREEN); /* red when too much noise, green when low noise*/
|
||||
|
||||
/* Now draw the bars with the filled, then empty rectangles */
|
||||
SDL_RenderFillRect(ctx->renderer, &progress_bar_fill); /* draw the filled rectangle*/
|
||||
SDL_SetRenderDrawColor(ctx->renderer, 100, 100, 100, 255); /* gray box*/
|
||||
@@ -1823,20 +1860,26 @@ float RenderEulerReadout(GyroDisplay *ctx, GamepadDisplay *gamepad_display )
|
||||
const float new_line_height = gamepad_display->button_height + 2.0f;
|
||||
float log_gyro_euler_text_x = gyro_calibrate_button_rect.x;
|
||||
|
||||
Uint8 r, g, b, a;
|
||||
SDL_GetRenderDrawColor(ctx->renderer, &r, &g, &b, &a);
|
||||
/* Pitch Readout */
|
||||
SDL_SetRenderDrawColor(ctx->renderer, GYRO_COLOR_RED);
|
||||
SDL_snprintf(text, sizeof(text), "Pitch: %6.2f%s", ctx->euler_displacement_angles[0], DEGREE_UTF8);
|
||||
SDLTest_DrawString(ctx->renderer, log_gyro_euler_text_x + 2.0f, log_y, text);
|
||||
|
||||
/* Yaw Readout */
|
||||
SDL_SetRenderDrawColor(ctx->renderer, GYRO_COLOR_GREEN);
|
||||
log_y += new_line_height;
|
||||
SDL_snprintf(text, sizeof(text), " Yaw: %6.2f%s", ctx->euler_displacement_angles[1], DEGREE_UTF8);
|
||||
SDLTest_DrawString(ctx->renderer, log_gyro_euler_text_x + 2.0f, log_y, text);
|
||||
|
||||
/* Roll Readout */
|
||||
SDL_SetRenderDrawColor(ctx->renderer, GYRO_COLOR_BLUE);
|
||||
log_y += new_line_height;
|
||||
SDL_snprintf(text, sizeof(text), " Roll: %6.2f%s", ctx->euler_displacement_angles[2], DEGREE_UTF8);
|
||||
SDLTest_DrawString(ctx->renderer, log_gyro_euler_text_x + 2.0f, log_y, text);
|
||||
|
||||
SDL_SetRenderDrawColor(ctx->renderer, r, g, b, a);
|
||||
return log_y + new_line_height; /* Return the next y position for further rendering */
|
||||
}
|
||||
|
||||
@@ -1859,6 +1902,9 @@ void RenderGyroGizmo(GyroDisplay *ctx, SDL_Gamepad *gamepad, float top)
|
||||
/* Draw the rotated cube */
|
||||
DrawGyroDebugCube(ctx->renderer, &ctx->gyro_quaternion, &gizmoRect);
|
||||
|
||||
/* Draw positive axes */
|
||||
DrawGyroDebugAxes(ctx->renderer, &ctx->gyro_quaternion, &gizmoRect);
|
||||
|
||||
/* Overlay the XYZ circles */
|
||||
DrawGyroDebugCircle(ctx->renderer, &ctx->gyro_quaternion, &gizmoRect);
|
||||
|
||||
@@ -1906,7 +1952,6 @@ void RenderGyroDisplay(GyroDisplay *ctx, GamepadDisplay *gamepadElements, SDL_Ga
|
||||
if (bHasCachedDriftSolution) {
|
||||
float bottom = RenderEulerReadout(ctx, gamepadElements);
|
||||
RenderGyroGizmo(ctx, gamepad, bottom);
|
||||
|
||||
}
|
||||
SDL_SetRenderDrawColor(ctx->renderer, r, g, b, a);
|
||||
}
|
||||
|
@@ -53,62 +53,59 @@ struct Quaternion
|
||||
|
||||
static Quaternion quat_identity = { 0.0f, 0.0f, 0.0f, 1.0f };
|
||||
|
||||
Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
|
||||
Quaternion QuaternionFromEuler(float pitch, float yaw, float roll)
|
||||
{
|
||||
Quaternion q;
|
||||
float cx = SDL_cosf(pitch * 0.5f);
|
||||
float sx = SDL_sinf(pitch * 0.5f);
|
||||
float cy = SDL_cosf(yaw * 0.5f);
|
||||
float sy = SDL_sinf(yaw * 0.5f);
|
||||
float cp = SDL_cosf(pitch * 0.5f);
|
||||
float sp = SDL_sinf(pitch * 0.5f);
|
||||
float cr = SDL_cosf(roll * 0.5f);
|
||||
float sr = SDL_sinf(roll * 0.5f);
|
||||
float cz = SDL_cosf(roll * 0.5f);
|
||||
float sz = SDL_sinf(roll * 0.5f);
|
||||
|
||||
q.w = cr * cp * cy + sr * sp * sy;
|
||||
q.x = sr * cp * cy - cr * sp * sy;
|
||||
q.y = cr * sp * cy + sr * cp * sy;
|
||||
q.z = cr * cp * sy - sr * sp * cy;
|
||||
Quaternion q;
|
||||
q.w = cx * cy * cz + sx * sy * sz;
|
||||
q.x = sx * cy * cz - cx * sy * sz;
|
||||
q.y = cx * sy * cz + sx * cy * sz;
|
||||
q.z = cx * cy * sz - sx * sy * cz;
|
||||
|
||||
return q;
|
||||
}
|
||||
|
||||
static void EulerFromQuaternion(Quaternion q, float *roll, float *pitch, float *yaw)
|
||||
#define RAD_TO_DEG (180.0f / SDL_PI_F)
|
||||
|
||||
/* Decomposes quaternion into Yaw (Y), Pitch (X), Roll (Z) using Y-X-Z order in a left-handed system */
|
||||
void QuaternionToYXZ(Quaternion q, float *pitch, float *yaw, float *roll)
|
||||
{
|
||||
float sinr_cosp = 2.0f * (q.w * q.x + q.y * q.z);
|
||||
float cosr_cosp = 1.0f - 2.0f * (q.x * q.x + q.y * q.y);
|
||||
float roll_rad = SDL_atan2f(sinr_cosp, cosr_cosp);
|
||||
/* Precalculate repeated expressions */
|
||||
float qxx = q.x * q.x;
|
||||
float qyy = q.y * q.y;
|
||||
float qzz = q.z * q.z;
|
||||
|
||||
float sinp = 2.0f * (q.w * q.y - q.z * q.x);
|
||||
float pitch_rad;
|
||||
if (SDL_fabsf(sinp) >= 1.0f) {
|
||||
pitch_rad = SDL_copysignf(SDL_PI_F / 2.0f, sinp);
|
||||
} else {
|
||||
pitch_rad = SDL_asinf(sinp);
|
||||
}
|
||||
float qxy = q.x * q.y;
|
||||
float qxz = q.x * q.z;
|
||||
float qyz = q.y * q.z;
|
||||
float qwx = q.w * q.x;
|
||||
float qwy = q.w * q.y;
|
||||
float qwz = q.w * q.z;
|
||||
|
||||
float siny_cosp = 2.0f * (q.w * q.z + q.x * q.y);
|
||||
float cosy_cosp = 1.0f - 2.0f * (q.y * q.y + q.z * q.z);
|
||||
float yaw_rad = SDL_atan2f(siny_cosp, cosy_cosp);
|
||||
|
||||
if (roll)
|
||||
*roll = roll_rad;
|
||||
if (pitch)
|
||||
*pitch = pitch_rad;
|
||||
if (yaw)
|
||||
*yaw = yaw_rad;
|
||||
}
|
||||
|
||||
static void EulerDegreesFromQuaternion(Quaternion q, float *pitch, float *yaw, float *roll)
|
||||
{
|
||||
float pitch_rad, yaw_rad, roll_rad;
|
||||
EulerFromQuaternion(q, &pitch_rad, &yaw_rad, &roll_rad);
|
||||
if (pitch) {
|
||||
*pitch = pitch_rad * (180.0f / SDL_PI_F);
|
||||
}
|
||||
/* Yaw (around Y) */
|
||||
if (yaw) {
|
||||
*yaw = yaw_rad * (180.0f / SDL_PI_F);
|
||||
*yaw = SDL_atan2f(2.0f * (qwy + qxz), 1.0f - 2.0f * (qyy + qzz)) * RAD_TO_DEG;
|
||||
}
|
||||
|
||||
/* Pitch (around X) */
|
||||
float sinp = 2.0f * (qwx - qyz);
|
||||
if (pitch) {
|
||||
if (SDL_fabsf(sinp) >= 1.0f) {
|
||||
*pitch = SDL_copysignf(90.0f, sinp); /* Clamp to avoid domain error */
|
||||
} else {
|
||||
*pitch = SDL_asinf(sinp) * RAD_TO_DEG;
|
||||
}
|
||||
}
|
||||
|
||||
/* Roll (around Z) */
|
||||
if (roll) {
|
||||
*roll = roll_rad * (180.0f / SDL_PI_F);
|
||||
*roll = SDL_atan2f(2.0f * (qwz + qxy), 1.0f - 2.0f * (qxx + qzz)) * RAD_TO_DEG;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1375,7 +1372,16 @@ static void HandleGamepadGyroEvent(SDL_Event *event)
|
||||
SDL_memcpy(controller->imu_state->gyro_data, event->gsensor.data, sizeof(controller->imu_state->gyro_data));
|
||||
}
|
||||
|
||||
/* Two strategies for evaluating polling rate - one based on a fixed packet count, and one using a fixed time window.
|
||||
* Smaller values in either will give you a more responsive polling rate estimate, but this may fluctuate more.
|
||||
* Larger values in either will give you a more stable average but they will require more time to evaluate.
|
||||
* Generally, wired connections tend to give much more stable
|
||||
*/
|
||||
/* #define SDL_USE_FIXED_PACKET_COUNT_FOR_ESTIMATION */
|
||||
#define SDL_GAMEPAD_IMU_MIN_POLLING_RATE_ESTIMATION_COUNT 2048
|
||||
#define SDL_GAMEPAD_IMU_MIN_POLLING_RATE_ESTIMATION_TIME_NS (SDL_NS_PER_SECOND * 2)
|
||||
|
||||
|
||||
static void EstimatePacketRate()
|
||||
{
|
||||
Uint64 now_ns = SDL_GetTicksNS();
|
||||
@@ -1384,17 +1390,22 @@ static void EstimatePacketRate()
|
||||
}
|
||||
|
||||
/* Require a significant sample size before averaging rate. */
|
||||
#ifdef SDL_USE_FIXED_PACKET_COUNT_FOR_ESTIMATION
|
||||
if (controller->imu_state->imu_packet_counter >= SDL_GAMEPAD_IMU_MIN_POLLING_RATE_ESTIMATION_COUNT) {
|
||||
Uint64 deltatime_ns = now_ns - controller->imu_state->starting_time_stamp_ns;
|
||||
controller->imu_state->imu_estimated_sensor_rate = (Uint16)((controller->imu_state->imu_packet_counter * 1000000000ULL) / deltatime_ns);
|
||||
}
|
||||
|
||||
/* Flush sampled data after a brief period so that the imu_estimated_sensor_rate value can be read.*/
|
||||
if (controller->imu_state->imu_packet_counter >= SDL_GAMEPAD_IMU_MIN_POLLING_RATE_ESTIMATION_COUNT * 2) {
|
||||
controller->imu_state->starting_time_stamp_ns = now_ns;
|
||||
controller->imu_state->imu_estimated_sensor_rate = (Uint16)((controller->imu_state->imu_packet_counter * SDL_NS_PER_SECOND) / deltatime_ns);
|
||||
controller->imu_state->imu_packet_counter = 0;
|
||||
}
|
||||
++controller->imu_state->imu_packet_counter;
|
||||
#else
|
||||
Uint64 deltatime_ns = now_ns - controller->imu_state->starting_time_stamp_ns;
|
||||
if (deltatime_ns >= SDL_GAMEPAD_IMU_MIN_POLLING_RATE_ESTIMATION_TIME_NS) {
|
||||
controller->imu_state->imu_estimated_sensor_rate = (Uint16)((controller->imu_state->imu_packet_counter * SDL_NS_PER_SECOND) / deltatime_ns);
|
||||
controller->imu_state->imu_packet_counter = 0;
|
||||
}
|
||||
#endif
|
||||
else {
|
||||
++controller->imu_state->imu_packet_counter;
|
||||
}
|
||||
}
|
||||
|
||||
static void UpdateGamepadOrientation( Uint64 delta_time_ns )
|
||||
@@ -1409,13 +1420,11 @@ static void UpdateGamepadOrientation( Uint64 delta_time_ns )
|
||||
|
||||
static void HandleGamepadSensorEvent( SDL_Event* event )
|
||||
{
|
||||
if (!controller) {
|
||||
return;
|
||||
}
|
||||
if (!controller)
|
||||
return;
|
||||
|
||||
if (controller->id != event->gsensor.which) {
|
||||
if (controller->id != event->gsensor.which)
|
||||
return;
|
||||
}
|
||||
|
||||
if (event->gsensor.sensor == SDL_SENSOR_GYRO) {
|
||||
HandleGamepadGyroEvent(event);
|
||||
@@ -1428,13 +1437,12 @@ static void HandleGamepadSensorEvent( SDL_Event* event )
|
||||
accelerometer and gyro events are received before progressing.
|
||||
*/
|
||||
if ( controller->imu_state->accelerometer_packet_number == controller->imu_state->gyro_packet_number ) {
|
||||
|
||||
EstimatePacketRate();
|
||||
Uint64 sensorTimeStampDelta_ns = event->gsensor.sensor_timestamp - controller->imu_state->last_sensor_time_stamp_ns ;
|
||||
UpdateGamepadOrientation(sensorTimeStampDelta_ns);
|
||||
|
||||
float display_euler_angles[3];
|
||||
EulerDegreesFromQuaternion(controller->imu_state->integrated_rotation, &display_euler_angles[0], &display_euler_angles[1], &display_euler_angles[2]);
|
||||
QuaternionToYXZ(controller->imu_state->integrated_rotation, &display_euler_angles[0], &display_euler_angles[1], &display_euler_angles[2]);
|
||||
|
||||
float drift_calibration_progress_frac = controller->imu_state->gyro_drift_sample_count / (float)SDL_GAMEPAD_IMU_MIN_GYRO_DRIFT_SAMPLE_COUNT;
|
||||
int reported_polling_rate_hz = sensorTimeStampDelta_ns > 0 ? (int)(SDL_NS_PER_SECOND / sensorTimeStampDelta_ns) : 0;
|
||||
@@ -2073,7 +2081,6 @@ SDL_AppResult SDLCALL SDL_AppEvent(void *appstate, SDL_Event *event)
|
||||
event->gsensor.data[1],
|
||||
event->gsensor.data[2],
|
||||
event->gsensor.sensor_timestamp);
|
||||
|
||||
#endif /* VERBOSE_SENSORS */
|
||||
HandleGamepadSensorEvent(event);
|
||||
break;
|
||||
|
Reference in New Issue
Block a user