mirror of
https://github.com/ghostty-org/ghostty.git
synced 2025-09-05 19:08:17 +00:00
apprt/gtk-ng: goto_split
(including spatial navigation for the first time for our GTK backend) (#8210)
This continues #8202 by fixing two of the known issues: `goto_split` key binds work and closing a split moves focus to the proper place. A big improvement in this PR is that for the first time ever in our GTK backend, the up/down/left/right `goto_split` bindings **use spatial navigation.** "Spatial navigation" means that the direction to move focus is done based on the nearest split _visually_ from the current split, rather than via a tree traversal. We did this on macOS a couple months ago, with a lot more details there: #7523 Similar to macOS, the spatial navigation is currently based on top-left corner. Now that our split tree is implemented in Zig though it should be a lot easier for us to work in the current cursor position as the reference point. ~~🚧 TODO: Going to add some unit tests for the spatial navigation before merge.~~
This commit is contained in:
@@ -34,6 +34,7 @@ const Common = @import("../class.zig").Common;
|
||||
const WeakRef = @import("../weak_ref.zig").WeakRef;
|
||||
const Config = @import("config.zig").Config;
|
||||
const Surface = @import("surface.zig").Surface;
|
||||
const SplitTree = @import("split_tree.zig").SplitTree;
|
||||
const Window = @import("window.zig").Window;
|
||||
const CloseConfirmationDialog = @import("close_confirmation_dialog.zig").CloseConfirmationDialog;
|
||||
const ConfigErrorsDialog = @import("config_errors_dialog.zig").ConfigErrorsDialog;
|
||||
@@ -552,6 +553,8 @@ pub const Application = extern struct {
|
||||
|
||||
.desktop_notification => Action.desktopNotification(self, target, value),
|
||||
|
||||
.goto_split => return Action.gotoSplit(target, value),
|
||||
|
||||
.goto_tab => return Action.gotoTab(target, value),
|
||||
|
||||
.initial_size => return Action.initialSize(target, value),
|
||||
@@ -615,7 +618,6 @@ pub const Application = extern struct {
|
||||
// TODO: splits
|
||||
.resize_split,
|
||||
.equalize_splits,
|
||||
.goto_split,
|
||||
.toggle_split_zoom,
|
||||
=> {
|
||||
log.warn("unimplemented action={}", .{action});
|
||||
@@ -1650,6 +1652,38 @@ const Action = struct {
|
||||
gio_app.sendNotification(n.body, notification);
|
||||
}
|
||||
|
||||
pub fn gotoSplit(
|
||||
target: apprt.Target,
|
||||
to: apprt.action.GotoSplit,
|
||||
) bool {
|
||||
switch (target) {
|
||||
.app => return false,
|
||||
.surface => |core| {
|
||||
// Design note: we can't use widget actions here because
|
||||
// we need to know whether there is a goto target for returning
|
||||
// the proper perform result (boolean).
|
||||
|
||||
const surface = core.rt_surface.surface;
|
||||
const tree = ext.getAncestor(
|
||||
SplitTree,
|
||||
surface.as(gtk.Widget),
|
||||
) orelse {
|
||||
log.warn("surface is not in a split tree, ignoring goto_split", .{});
|
||||
return false;
|
||||
};
|
||||
|
||||
return tree.goto(switch (to) {
|
||||
.previous => .previous_wrapped,
|
||||
.next => .next_wrapped,
|
||||
.up => .{ .spatial = .up },
|
||||
.down => .{ .spatial = .down },
|
||||
.left => .{ .spatial = .left },
|
||||
.right => .{ .spatial = .right },
|
||||
});
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn gotoTab(
|
||||
target: apprt.Target,
|
||||
tab: apprt.action.GotoTab,
|
||||
|
@@ -246,6 +246,7 @@ pub const SplitTree = extern struct {
|
||||
alloc,
|
||||
handle,
|
||||
direction,
|
||||
0.5, // Always split equally for new splits
|
||||
&single_tree,
|
||||
);
|
||||
defer new_tree.deinit();
|
||||
@@ -258,6 +259,34 @@ pub const SplitTree = extern struct {
|
||||
self.setTree(&new_tree);
|
||||
}
|
||||
|
||||
/// Move focus from the currently focused surface to the given
|
||||
/// direction. Returns true if focus switched to a new surface.
|
||||
pub fn goto(self: *Self, to: Surface.Tree.Goto) bool {
|
||||
const tree = self.getTree() orelse return false;
|
||||
const active = self.getActiveSurfaceHandle() orelse return false;
|
||||
const target = if (tree.goto(
|
||||
Application.default().allocator(),
|
||||
active,
|
||||
to,
|
||||
)) |handle_|
|
||||
handle_ orelse return false
|
||||
else |err| switch (err) {
|
||||
// Nothing we can do in this scenario. This is highly unlikely
|
||||
// since split trees don't use that much memory. The application
|
||||
// is probably about to crash in other ways.
|
||||
error.OutOfMemory => return false,
|
||||
};
|
||||
|
||||
// If we aren't changing targets then we did nothing.
|
||||
if (active == target) return false;
|
||||
|
||||
// Get the surface at the target location and grab focus.
|
||||
const surface = tree.nodes[target].leaf;
|
||||
surface.grabFocus();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
fn disconnectSurfaceHandlers(self: *Self) void {
|
||||
const tree = self.getTree() orelse return;
|
||||
var it = tree.iterator();
|
||||
@@ -572,8 +601,25 @@ pub const SplitTree = extern struct {
|
||||
const handle = priv.pending_close orelse return;
|
||||
priv.pending_close = null;
|
||||
|
||||
// Remove it from the tree.
|
||||
// Figure out our next focus target. The next focus target is
|
||||
// always the "previous" surface unless we're the leftmost then
|
||||
// its the next.
|
||||
const old_tree = self.getTree() orelse return;
|
||||
const next_focus: ?*Surface = next_focus: {
|
||||
const alloc = Application.default().allocator();
|
||||
const next_handle: Surface.Tree.Node.Handle =
|
||||
(old_tree.goto(alloc, handle, .previous) catch null) orelse
|
||||
(old_tree.goto(alloc, handle, .next) catch null) orelse
|
||||
break :next_focus null;
|
||||
if (next_handle == handle) break :next_focus null;
|
||||
|
||||
// Note: we don't need to ref this or anything because its
|
||||
// guaranteed to remain in the new tree since its not part
|
||||
// of the handle we're removing.
|
||||
break :next_focus old_tree.nodes[next_handle].leaf;
|
||||
};
|
||||
|
||||
// Remove it from the tree.
|
||||
var new_tree = old_tree.remove(
|
||||
Application.default().allocator(),
|
||||
handle,
|
||||
@@ -583,6 +629,10 @@ pub const SplitTree = extern struct {
|
||||
};
|
||||
defer new_tree.deinit();
|
||||
self.setTree(&new_tree);
|
||||
|
||||
// Grab focus. We have to set this on the "last focused" because our
|
||||
// focus will be set when the tree is redrawn.
|
||||
if (next_focus) |v| priv.last_focused.set(v);
|
||||
}
|
||||
|
||||
fn propSurfaceFocused(
|
||||
|
@@ -152,16 +152,16 @@ pub fn SplitTree(comptime V: type) type {
|
||||
return .{ .nodes = self.nodes };
|
||||
}
|
||||
|
||||
pub const ViewEntry = struct {
|
||||
handle: Node.Handle,
|
||||
view: *View,
|
||||
};
|
||||
|
||||
pub const Iterator = struct {
|
||||
i: Node.Handle = 0,
|
||||
nodes: []const Node,
|
||||
|
||||
pub const Entry = struct {
|
||||
handle: Node.Handle,
|
||||
view: *View,
|
||||
};
|
||||
|
||||
pub fn next(self: *Iterator) ?Entry {
|
||||
pub fn next(self: *Iterator) ?ViewEntry {
|
||||
// If we have no nodes, return null.
|
||||
if (self.i >= self.nodes.len) return null;
|
||||
|
||||
@@ -177,6 +177,214 @@ pub fn SplitTree(comptime V: type) type {
|
||||
}
|
||||
};
|
||||
|
||||
pub const Goto = union(enum) {
|
||||
/// Previous view, null if we're the first view.
|
||||
previous,
|
||||
|
||||
/// Next view, null if we're the last view.
|
||||
next,
|
||||
|
||||
/// Previous view, but wrapped around to the last view. May
|
||||
/// return the same view if this is the first view.
|
||||
previous_wrapped,
|
||||
|
||||
/// Next view, but wrapped around to the first view. May return
|
||||
/// the same view if this is the last view.
|
||||
next_wrapped,
|
||||
|
||||
/// A spatial direction. "Spatial" means that the direction is
|
||||
/// based on the nearest surface in the given direction visually
|
||||
/// as the surfaces are laid out on a 2D grid.
|
||||
spatial: Spatial.Direction,
|
||||
};
|
||||
|
||||
/// Goto a view from a certain point in the split tree. Returns null
|
||||
/// if the direction results in no visitable view.
|
||||
///
|
||||
/// Allocator is only used for temporary state for spatial navigation.
|
||||
pub fn goto(
|
||||
self: *const Self,
|
||||
alloc: Allocator,
|
||||
from: Node.Handle,
|
||||
to: Goto,
|
||||
) Allocator.Error!?Node.Handle {
|
||||
return switch (to) {
|
||||
.previous => self.previous(from),
|
||||
.next => self.next(from),
|
||||
.previous_wrapped => self.previous(from) orelse self.deepest(.right, 0),
|
||||
.next_wrapped => self.next(from) orelse self.deepest(.left, 0),
|
||||
.spatial => |d| spatial: {
|
||||
// Get our spatial representation.
|
||||
var sp = try self.spatial(alloc);
|
||||
defer sp.deinit(alloc);
|
||||
break :spatial self.nearest(sp, from, d);
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
pub const Side = enum { left, right };
|
||||
|
||||
/// Returns the deepest view in the tree in the given direction.
|
||||
/// This can be used to find the leftmost/rightmost surface within
|
||||
/// a given split structure.
|
||||
pub fn deepest(
|
||||
self: *const Self,
|
||||
side: Side,
|
||||
from: Node.Handle,
|
||||
) Node.Handle {
|
||||
var current: Node.Handle = from;
|
||||
while (true) {
|
||||
switch (self.nodes[current]) {
|
||||
.leaf => return current,
|
||||
.split => |s| current = switch (side) {
|
||||
.left => s.left,
|
||||
.right => s.right,
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the previous view from the given node handle (which itself
|
||||
/// doesn't need to be a view). If there is no previous (this is the
|
||||
/// most previous view) then this will return null.
|
||||
///
|
||||
/// "Previous" is defined as the previous node in an in-order
|
||||
/// traversal of the tree. This isn't a perfect definition and we
|
||||
/// may want to change this to something that better matches a
|
||||
/// spatial view of the tree later.
|
||||
fn previous(self: *const Self, from: Node.Handle) ?Node.Handle {
|
||||
return switch (self.previousBacktrack(from, 0)) {
|
||||
.result => |v| v,
|
||||
.backtrack, .deadend => null,
|
||||
};
|
||||
}
|
||||
|
||||
/// Same as `previous`, but returns the next view instead.
|
||||
fn next(self: *const Self, from: Node.Handle) ?Node.Handle {
|
||||
return switch (self.nextBacktrack(from, 0)) {
|
||||
.result => |v| v,
|
||||
.backtrack, .deadend => null,
|
||||
};
|
||||
}
|
||||
|
||||
// Design note: we use a recursive backtracking search because
|
||||
// split trees are never that deep, so we can abuse the stack as
|
||||
// a safe allocator (stack overflow unlikely unless the kernel is
|
||||
// tuned in some really weird way).
|
||||
const Backtrack = union(enum) {
|
||||
deadend,
|
||||
backtrack,
|
||||
result: Node.Handle,
|
||||
};
|
||||
|
||||
fn previousBacktrack(
|
||||
self: *const Self,
|
||||
from: Node.Handle,
|
||||
current: Node.Handle,
|
||||
) Backtrack {
|
||||
// If we reached the point that we're trying to find the previous
|
||||
// value of, then we need to backtrack from here.
|
||||
if (from == current) return .backtrack;
|
||||
|
||||
return switch (self.nodes[current]) {
|
||||
// If we hit a leaf that isn't our target, then deadend.
|
||||
.leaf => .deadend,
|
||||
|
||||
.split => |s| switch (self.previousBacktrack(from, s.left)) {
|
||||
.result => |v| .{ .result = v },
|
||||
|
||||
// Backtrack from the left means we have to continue
|
||||
// backtracking because we can't see what's before the left.
|
||||
.backtrack => .backtrack,
|
||||
|
||||
// If we hit a deadend on the left then let's move right.
|
||||
.deadend => switch (self.previousBacktrack(from, s.right)) {
|
||||
.result => |v| .{ .result = v },
|
||||
|
||||
// Deadend means its not in this split at all since
|
||||
// we already tracked the left.
|
||||
.deadend => .deadend,
|
||||
|
||||
// Backtrack means that its in our left view because
|
||||
// we can see the immediate previous and there MUST
|
||||
// be leaves (we can't have split-only leaves).
|
||||
.backtrack => .{ .result = self.deepest(.right, s.left) },
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
// See previousBacktrack for detailed comments. This is a mirror
|
||||
// of that.
|
||||
fn nextBacktrack(
|
||||
self: *const Self,
|
||||
from: Node.Handle,
|
||||
current: Node.Handle,
|
||||
) Backtrack {
|
||||
if (from == current) return .backtrack;
|
||||
return switch (self.nodes[current]) {
|
||||
.leaf => .deadend,
|
||||
.split => |s| switch (self.nextBacktrack(from, s.right)) {
|
||||
.result => |v| .{ .result = v },
|
||||
.backtrack => .backtrack,
|
||||
.deadend => switch (self.nextBacktrack(from, s.left)) {
|
||||
.result => |v| .{ .result = v },
|
||||
.deadend => .deadend,
|
||||
.backtrack => .{ .result = self.deepest(.left, s.right) },
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/// Returns the nearest leaf node (view) in the given direction.
|
||||
fn nearest(
|
||||
self: *const Self,
|
||||
sp: Spatial,
|
||||
from: Node.Handle,
|
||||
direction: Spatial.Direction,
|
||||
) ?Node.Handle {
|
||||
const target = sp.slots[from];
|
||||
|
||||
var result: ?struct {
|
||||
handle: Node.Handle,
|
||||
distance: f16,
|
||||
} = null;
|
||||
for (sp.slots, 0..) |slot, handle| {
|
||||
// Never match ourself
|
||||
if (handle == from) continue;
|
||||
|
||||
// Only match leaves
|
||||
switch (self.nodes[handle]) {
|
||||
.leaf => {},
|
||||
.split => continue,
|
||||
}
|
||||
|
||||
// Ensure it is in the proper direction
|
||||
if (!switch (direction) {
|
||||
.left => slot.maxX() <= target.x,
|
||||
.right => slot.x >= target.maxX(),
|
||||
.up => slot.maxY() <= target.y,
|
||||
.down => slot.y >= target.maxY(),
|
||||
}) continue;
|
||||
|
||||
// Track our distance
|
||||
const dx = slot.x - target.x;
|
||||
const dy = slot.y - target.y;
|
||||
const distance = @sqrt(dx * dx + dy * dy);
|
||||
|
||||
// If we have a nearest it must be closer.
|
||||
if (result) |n| {
|
||||
if (distance >= n.distance) continue;
|
||||
}
|
||||
result = .{
|
||||
.handle = @intCast(handle),
|
||||
.distance = distance,
|
||||
};
|
||||
}
|
||||
|
||||
return if (result) |n| n.handle else null;
|
||||
}
|
||||
|
||||
/// Resize the given node in place. The node MUST be a split (asserted).
|
||||
///
|
||||
/// In general, this is an immutable data structure so this is
|
||||
@@ -211,6 +419,7 @@ pub fn SplitTree(comptime V: type) type {
|
||||
gpa: Allocator,
|
||||
at: Node.Handle,
|
||||
direction: Split.Direction,
|
||||
ratio: f16,
|
||||
insert: *const Self,
|
||||
) Allocator.Error!Self {
|
||||
// The new arena for our new tree.
|
||||
@@ -255,7 +464,7 @@ pub fn SplitTree(comptime V: type) type {
|
||||
nodes[nodes.len - 1] = nodes[at];
|
||||
nodes[at] = .{ .split = .{
|
||||
.layout = layout,
|
||||
.ratio = 0.5,
|
||||
.ratio = ratio,
|
||||
.left = @intCast(if (left) self.nodes.len else nodes.len - 1),
|
||||
.right = @intCast(if (left) nodes.len - 1 else self.nodes.len),
|
||||
} };
|
||||
@@ -441,14 +650,24 @@ pub fn SplitTree(comptime V: type) type {
|
||||
|
||||
pub const empty: Spatial = .{ .slots = &.{} };
|
||||
|
||||
pub const Direction = enum { left, right, down, up };
|
||||
|
||||
const Slot = struct {
|
||||
x: f16,
|
||||
y: f16,
|
||||
width: f16,
|
||||
height: f16,
|
||||
|
||||
fn maxX(self: *const Slot) f16 {
|
||||
return self.x + self.width;
|
||||
}
|
||||
|
||||
fn maxY(self: *const Slot) f16 {
|
||||
return self.y + self.height;
|
||||
}
|
||||
};
|
||||
|
||||
pub fn deinit(self: *const Spatial, alloc: Allocator) void {
|
||||
pub fn deinit(self: *Spatial, alloc: Allocator) void {
|
||||
alloc.free(self.slots);
|
||||
self.* = undefined;
|
||||
}
|
||||
@@ -779,6 +998,12 @@ pub fn SplitTree(comptime V: type) type {
|
||||
|
||||
// Output every row
|
||||
for (grid) |row| {
|
||||
// We currently have a bug in our height calculation that
|
||||
// results in trailing blank lines. Ignore those. We should
|
||||
// really fix our height calculation instead. If someone wants
|
||||
// to do that just remove this line and see the tests that fail
|
||||
// and go from there.
|
||||
if (row[0] == ' ') break;
|
||||
try writer.writeAll(row);
|
||||
}
|
||||
}
|
||||
@@ -914,6 +1139,7 @@ test "SplitTree: split horizontal" {
|
||||
alloc,
|
||||
0, // at root
|
||||
.right, // split right
|
||||
0.5,
|
||||
&t2, // insert t2
|
||||
);
|
||||
defer t3.deinit();
|
||||
@@ -945,6 +1171,7 @@ test "SplitTree: split horizontal" {
|
||||
}
|
||||
} else return error.NotFound,
|
||||
.right,
|
||||
0.5,
|
||||
&tC,
|
||||
);
|
||||
defer t4.deinit();
|
||||
@@ -978,6 +1205,7 @@ test "SplitTree: split horizontal" {
|
||||
}
|
||||
} else return error.NotFound,
|
||||
.right,
|
||||
0.5,
|
||||
&tD,
|
||||
);
|
||||
defer t5.deinit();
|
||||
@@ -999,6 +1227,66 @@ test "SplitTree: split horizontal" {
|
||||
\\
|
||||
, str);
|
||||
}
|
||||
|
||||
// Find "previous" from D back.
|
||||
{
|
||||
var current: u8 = 'D';
|
||||
while (current != 'A') : (current -= 1) {
|
||||
it = t5.iterator();
|
||||
const handle = t5.previous(
|
||||
while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, &.{current})) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound,
|
||||
).?;
|
||||
|
||||
const entry = t5.nodes[handle].leaf;
|
||||
try testing.expectEqualStrings(
|
||||
entry.label,
|
||||
&.{current - 1},
|
||||
);
|
||||
}
|
||||
|
||||
it = t5.iterator();
|
||||
try testing.expect(t5.previous(
|
||||
while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, &.{current})) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound,
|
||||
) == null);
|
||||
}
|
||||
|
||||
// Find "next" from A forward.
|
||||
{
|
||||
var current: u8 = 'A';
|
||||
while (current != 'D') : (current += 1) {
|
||||
it = t5.iterator();
|
||||
const handle = t5.next(
|
||||
while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, &.{current})) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound,
|
||||
).?;
|
||||
|
||||
const entry = t5.nodes[handle].leaf;
|
||||
try testing.expectEqualStrings(
|
||||
entry.label,
|
||||
&.{current + 1},
|
||||
);
|
||||
}
|
||||
|
||||
it = t5.iterator();
|
||||
try testing.expect(t5.next(
|
||||
while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, &.{current})) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound,
|
||||
) == null);
|
||||
}
|
||||
}
|
||||
|
||||
test "SplitTree: split vertical" {
|
||||
@@ -1016,6 +1304,7 @@ test "SplitTree: split vertical" {
|
||||
alloc,
|
||||
0, // at root
|
||||
.down, // split down
|
||||
0.5,
|
||||
&t2, // insert t2
|
||||
);
|
||||
defer t3.deinit();
|
||||
@@ -1047,6 +1336,7 @@ test "SplitTree: remove leaf" {
|
||||
alloc,
|
||||
0, // at root
|
||||
.right, // split right
|
||||
0.5,
|
||||
&t2, // insert t2
|
||||
);
|
||||
defer t3.deinit();
|
||||
@@ -1092,6 +1382,7 @@ test "SplitTree: split twice, remove intermediary" {
|
||||
alloc,
|
||||
0, // at root
|
||||
.right, // split right
|
||||
0.5,
|
||||
&t2, // insert t2
|
||||
);
|
||||
defer split1.deinit();
|
||||
@@ -1101,6 +1392,7 @@ test "SplitTree: split twice, remove intermediary" {
|
||||
alloc,
|
||||
0, // at root
|
||||
.down, // split down
|
||||
0.5,
|
||||
&t3, // insert t3
|
||||
);
|
||||
defer split2.deinit();
|
||||
@@ -1154,6 +1446,125 @@ test "SplitTree: split twice, remove intermediary" {
|
||||
}
|
||||
}
|
||||
|
||||
test "SplitTree: spatial goto" {
|
||||
const testing = std.testing;
|
||||
const alloc = testing.allocator;
|
||||
|
||||
var v1: TestTree.View = .{ .label = "A" };
|
||||
var t1: TestTree = try .init(alloc, &v1);
|
||||
defer t1.deinit();
|
||||
var v2: TestTree.View = .{ .label = "B" };
|
||||
var t2: TestTree = try .init(alloc, &v2);
|
||||
defer t2.deinit();
|
||||
var v3: TestTree.View = .{ .label = "C" };
|
||||
var t3: TestTree = try .init(alloc, &v3);
|
||||
defer t3.deinit();
|
||||
var v4: TestTree.View = .{ .label = "D" };
|
||||
var t4: TestTree = try .init(alloc, &v4);
|
||||
defer t4.deinit();
|
||||
|
||||
// A | B horizontal
|
||||
var splitAB = try t1.split(
|
||||
alloc,
|
||||
0, // at root
|
||||
.right, // split right
|
||||
0.5,
|
||||
&t2, // insert t2
|
||||
);
|
||||
defer splitAB.deinit();
|
||||
|
||||
// A | C vertical
|
||||
var splitAC = try splitAB.split(
|
||||
alloc,
|
||||
at: {
|
||||
var it = splitAB.iterator();
|
||||
break :at while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, "A")) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound;
|
||||
},
|
||||
.down, // split down
|
||||
0.8,
|
||||
&t3, // insert t3
|
||||
);
|
||||
defer splitAC.deinit();
|
||||
|
||||
// B | D vertical
|
||||
var splitBD = try splitAC.split(
|
||||
alloc,
|
||||
at: {
|
||||
var it = splitAB.iterator();
|
||||
break :at while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, "B")) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound;
|
||||
},
|
||||
.down, // split down
|
||||
0.3,
|
||||
&t4, // insert t4
|
||||
);
|
||||
defer splitBD.deinit();
|
||||
const split = splitBD;
|
||||
|
||||
{
|
||||
const str = try std.fmt.allocPrint(alloc, "{diagram}", .{split});
|
||||
defer alloc.free(str);
|
||||
try testing.expectEqualStrings(str,
|
||||
\\+---++---+
|
||||
\\| || B |
|
||||
\\| |+---+
|
||||
\\| |+---+
|
||||
\\| A || |
|
||||
\\| || |
|
||||
\\| || |
|
||||
\\| || D |
|
||||
\\+---+| |
|
||||
\\+---+| |
|
||||
\\| C || |
|
||||
\\+---++---+
|
||||
\\
|
||||
);
|
||||
}
|
||||
|
||||
// Spatial C => right
|
||||
{
|
||||
const target = (try split.goto(
|
||||
alloc,
|
||||
from: {
|
||||
var it = split.iterator();
|
||||
break :from while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, "C")) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound;
|
||||
},
|
||||
.{ .spatial = .right },
|
||||
)).?;
|
||||
const view = split.nodes[target].leaf;
|
||||
try testing.expectEqualStrings(view.label, "D");
|
||||
}
|
||||
|
||||
// Spatial D => left
|
||||
{
|
||||
const target = (try split.goto(
|
||||
alloc,
|
||||
from: {
|
||||
var it = split.iterator();
|
||||
break :from while (it.next()) |entry| {
|
||||
if (std.mem.eql(u8, entry.view.label, "D")) {
|
||||
break entry.handle;
|
||||
}
|
||||
} else return error.NotFound;
|
||||
},
|
||||
.{ .spatial = .left },
|
||||
)).?;
|
||||
const view = split.nodes[target].leaf;
|
||||
try testing.expectEqualStrings("A", view.label);
|
||||
}
|
||||
}
|
||||
|
||||
test "SplitTree: clone empty tree" {
|
||||
const testing = std.testing;
|
||||
const alloc = testing.allocator;
|
||||
|
Reference in New Issue
Block a user