apprt/gtk-ng: goto_split (including spatial navigation for the first time for our GTK backend) (#8210)

This continues #8202 by fixing two of the known issues: `goto_split` key
binds work and closing a split moves focus to the proper place.

A big improvement in this PR is that for the first time ever in our GTK
backend, the up/down/left/right `goto_split` bindings **use spatial
navigation.** "Spatial navigation" means that the direction to move
focus is done based on the nearest split _visually_ from the current
split, rather than via a tree traversal. We did this on macOS a couple
months ago, with a lot more details there: #7523

Similar to macOS, the spatial navigation is currently based on top-left
corner. Now that our split tree is implemented in Zig though it should
be a lot easier for us to work in the current cursor position as the
reference point.

~~🚧 TODO: Going to add some unit tests for the spatial navigation before
merge.~~
This commit is contained in:
Mitchell Hashimoto
2025-08-11 11:04:06 -07:00
committed by GitHub
3 changed files with 505 additions and 10 deletions

View File

@@ -34,6 +34,7 @@ const Common = @import("../class.zig").Common;
const WeakRef = @import("../weak_ref.zig").WeakRef;
const Config = @import("config.zig").Config;
const Surface = @import("surface.zig").Surface;
const SplitTree = @import("split_tree.zig").SplitTree;
const Window = @import("window.zig").Window;
const CloseConfirmationDialog = @import("close_confirmation_dialog.zig").CloseConfirmationDialog;
const ConfigErrorsDialog = @import("config_errors_dialog.zig").ConfigErrorsDialog;
@@ -552,6 +553,8 @@ pub const Application = extern struct {
.desktop_notification => Action.desktopNotification(self, target, value),
.goto_split => return Action.gotoSplit(target, value),
.goto_tab => return Action.gotoTab(target, value),
.initial_size => return Action.initialSize(target, value),
@@ -615,7 +618,6 @@ pub const Application = extern struct {
// TODO: splits
.resize_split,
.equalize_splits,
.goto_split,
.toggle_split_zoom,
=> {
log.warn("unimplemented action={}", .{action});
@@ -1650,6 +1652,38 @@ const Action = struct {
gio_app.sendNotification(n.body, notification);
}
pub fn gotoSplit(
target: apprt.Target,
to: apprt.action.GotoSplit,
) bool {
switch (target) {
.app => return false,
.surface => |core| {
// Design note: we can't use widget actions here because
// we need to know whether there is a goto target for returning
// the proper perform result (boolean).
const surface = core.rt_surface.surface;
const tree = ext.getAncestor(
SplitTree,
surface.as(gtk.Widget),
) orelse {
log.warn("surface is not in a split tree, ignoring goto_split", .{});
return false;
};
return tree.goto(switch (to) {
.previous => .previous_wrapped,
.next => .next_wrapped,
.up => .{ .spatial = .up },
.down => .{ .spatial = .down },
.left => .{ .spatial = .left },
.right => .{ .spatial = .right },
});
},
}
}
pub fn gotoTab(
target: apprt.Target,
tab: apprt.action.GotoTab,

View File

@@ -246,6 +246,7 @@ pub const SplitTree = extern struct {
alloc,
handle,
direction,
0.5, // Always split equally for new splits
&single_tree,
);
defer new_tree.deinit();
@@ -258,6 +259,34 @@ pub const SplitTree = extern struct {
self.setTree(&new_tree);
}
/// Move focus from the currently focused surface to the given
/// direction. Returns true if focus switched to a new surface.
pub fn goto(self: *Self, to: Surface.Tree.Goto) bool {
const tree = self.getTree() orelse return false;
const active = self.getActiveSurfaceHandle() orelse return false;
const target = if (tree.goto(
Application.default().allocator(),
active,
to,
)) |handle_|
handle_ orelse return false
else |err| switch (err) {
// Nothing we can do in this scenario. This is highly unlikely
// since split trees don't use that much memory. The application
// is probably about to crash in other ways.
error.OutOfMemory => return false,
};
// If we aren't changing targets then we did nothing.
if (active == target) return false;
// Get the surface at the target location and grab focus.
const surface = tree.nodes[target].leaf;
surface.grabFocus();
return true;
}
fn disconnectSurfaceHandlers(self: *Self) void {
const tree = self.getTree() orelse return;
var it = tree.iterator();
@@ -572,8 +601,25 @@ pub const SplitTree = extern struct {
const handle = priv.pending_close orelse return;
priv.pending_close = null;
// Remove it from the tree.
// Figure out our next focus target. The next focus target is
// always the "previous" surface unless we're the leftmost then
// its the next.
const old_tree = self.getTree() orelse return;
const next_focus: ?*Surface = next_focus: {
const alloc = Application.default().allocator();
const next_handle: Surface.Tree.Node.Handle =
(old_tree.goto(alloc, handle, .previous) catch null) orelse
(old_tree.goto(alloc, handle, .next) catch null) orelse
break :next_focus null;
if (next_handle == handle) break :next_focus null;
// Note: we don't need to ref this or anything because its
// guaranteed to remain in the new tree since its not part
// of the handle we're removing.
break :next_focus old_tree.nodes[next_handle].leaf;
};
// Remove it from the tree.
var new_tree = old_tree.remove(
Application.default().allocator(),
handle,
@@ -583,6 +629,10 @@ pub const SplitTree = extern struct {
};
defer new_tree.deinit();
self.setTree(&new_tree);
// Grab focus. We have to set this on the "last focused" because our
// focus will be set when the tree is redrawn.
if (next_focus) |v| priv.last_focused.set(v);
}
fn propSurfaceFocused(

View File

@@ -152,16 +152,16 @@ pub fn SplitTree(comptime V: type) type {
return .{ .nodes = self.nodes };
}
pub const ViewEntry = struct {
handle: Node.Handle,
view: *View,
};
pub const Iterator = struct {
i: Node.Handle = 0,
nodes: []const Node,
pub const Entry = struct {
handle: Node.Handle,
view: *View,
};
pub fn next(self: *Iterator) ?Entry {
pub fn next(self: *Iterator) ?ViewEntry {
// If we have no nodes, return null.
if (self.i >= self.nodes.len) return null;
@@ -177,6 +177,214 @@ pub fn SplitTree(comptime V: type) type {
}
};
pub const Goto = union(enum) {
/// Previous view, null if we're the first view.
previous,
/// Next view, null if we're the last view.
next,
/// Previous view, but wrapped around to the last view. May
/// return the same view if this is the first view.
previous_wrapped,
/// Next view, but wrapped around to the first view. May return
/// the same view if this is the last view.
next_wrapped,
/// A spatial direction. "Spatial" means that the direction is
/// based on the nearest surface in the given direction visually
/// as the surfaces are laid out on a 2D grid.
spatial: Spatial.Direction,
};
/// Goto a view from a certain point in the split tree. Returns null
/// if the direction results in no visitable view.
///
/// Allocator is only used for temporary state for spatial navigation.
pub fn goto(
self: *const Self,
alloc: Allocator,
from: Node.Handle,
to: Goto,
) Allocator.Error!?Node.Handle {
return switch (to) {
.previous => self.previous(from),
.next => self.next(from),
.previous_wrapped => self.previous(from) orelse self.deepest(.right, 0),
.next_wrapped => self.next(from) orelse self.deepest(.left, 0),
.spatial => |d| spatial: {
// Get our spatial representation.
var sp = try self.spatial(alloc);
defer sp.deinit(alloc);
break :spatial self.nearest(sp, from, d);
},
};
}
pub const Side = enum { left, right };
/// Returns the deepest view in the tree in the given direction.
/// This can be used to find the leftmost/rightmost surface within
/// a given split structure.
pub fn deepest(
self: *const Self,
side: Side,
from: Node.Handle,
) Node.Handle {
var current: Node.Handle = from;
while (true) {
switch (self.nodes[current]) {
.leaf => return current,
.split => |s| current = switch (side) {
.left => s.left,
.right => s.right,
},
}
}
}
/// Returns the previous view from the given node handle (which itself
/// doesn't need to be a view). If there is no previous (this is the
/// most previous view) then this will return null.
///
/// "Previous" is defined as the previous node in an in-order
/// traversal of the tree. This isn't a perfect definition and we
/// may want to change this to something that better matches a
/// spatial view of the tree later.
fn previous(self: *const Self, from: Node.Handle) ?Node.Handle {
return switch (self.previousBacktrack(from, 0)) {
.result => |v| v,
.backtrack, .deadend => null,
};
}
/// Same as `previous`, but returns the next view instead.
fn next(self: *const Self, from: Node.Handle) ?Node.Handle {
return switch (self.nextBacktrack(from, 0)) {
.result => |v| v,
.backtrack, .deadend => null,
};
}
// Design note: we use a recursive backtracking search because
// split trees are never that deep, so we can abuse the stack as
// a safe allocator (stack overflow unlikely unless the kernel is
// tuned in some really weird way).
const Backtrack = union(enum) {
deadend,
backtrack,
result: Node.Handle,
};
fn previousBacktrack(
self: *const Self,
from: Node.Handle,
current: Node.Handle,
) Backtrack {
// If we reached the point that we're trying to find the previous
// value of, then we need to backtrack from here.
if (from == current) return .backtrack;
return switch (self.nodes[current]) {
// If we hit a leaf that isn't our target, then deadend.
.leaf => .deadend,
.split => |s| switch (self.previousBacktrack(from, s.left)) {
.result => |v| .{ .result = v },
// Backtrack from the left means we have to continue
// backtracking because we can't see what's before the left.
.backtrack => .backtrack,
// If we hit a deadend on the left then let's move right.
.deadend => switch (self.previousBacktrack(from, s.right)) {
.result => |v| .{ .result = v },
// Deadend means its not in this split at all since
// we already tracked the left.
.deadend => .deadend,
// Backtrack means that its in our left view because
// we can see the immediate previous and there MUST
// be leaves (we can't have split-only leaves).
.backtrack => .{ .result = self.deepest(.right, s.left) },
},
},
};
}
// See previousBacktrack for detailed comments. This is a mirror
// of that.
fn nextBacktrack(
self: *const Self,
from: Node.Handle,
current: Node.Handle,
) Backtrack {
if (from == current) return .backtrack;
return switch (self.nodes[current]) {
.leaf => .deadend,
.split => |s| switch (self.nextBacktrack(from, s.right)) {
.result => |v| .{ .result = v },
.backtrack => .backtrack,
.deadend => switch (self.nextBacktrack(from, s.left)) {
.result => |v| .{ .result = v },
.deadend => .deadend,
.backtrack => .{ .result = self.deepest(.left, s.right) },
},
},
};
}
/// Returns the nearest leaf node (view) in the given direction.
fn nearest(
self: *const Self,
sp: Spatial,
from: Node.Handle,
direction: Spatial.Direction,
) ?Node.Handle {
const target = sp.slots[from];
var result: ?struct {
handle: Node.Handle,
distance: f16,
} = null;
for (sp.slots, 0..) |slot, handle| {
// Never match ourself
if (handle == from) continue;
// Only match leaves
switch (self.nodes[handle]) {
.leaf => {},
.split => continue,
}
// Ensure it is in the proper direction
if (!switch (direction) {
.left => slot.maxX() <= target.x,
.right => slot.x >= target.maxX(),
.up => slot.maxY() <= target.y,
.down => slot.y >= target.maxY(),
}) continue;
// Track our distance
const dx = slot.x - target.x;
const dy = slot.y - target.y;
const distance = @sqrt(dx * dx + dy * dy);
// If we have a nearest it must be closer.
if (result) |n| {
if (distance >= n.distance) continue;
}
result = .{
.handle = @intCast(handle),
.distance = distance,
};
}
return if (result) |n| n.handle else null;
}
/// Resize the given node in place. The node MUST be a split (asserted).
///
/// In general, this is an immutable data structure so this is
@@ -211,6 +419,7 @@ pub fn SplitTree(comptime V: type) type {
gpa: Allocator,
at: Node.Handle,
direction: Split.Direction,
ratio: f16,
insert: *const Self,
) Allocator.Error!Self {
// The new arena for our new tree.
@@ -255,7 +464,7 @@ pub fn SplitTree(comptime V: type) type {
nodes[nodes.len - 1] = nodes[at];
nodes[at] = .{ .split = .{
.layout = layout,
.ratio = 0.5,
.ratio = ratio,
.left = @intCast(if (left) self.nodes.len else nodes.len - 1),
.right = @intCast(if (left) nodes.len - 1 else self.nodes.len),
} };
@@ -441,14 +650,24 @@ pub fn SplitTree(comptime V: type) type {
pub const empty: Spatial = .{ .slots = &.{} };
pub const Direction = enum { left, right, down, up };
const Slot = struct {
x: f16,
y: f16,
width: f16,
height: f16,
fn maxX(self: *const Slot) f16 {
return self.x + self.width;
}
fn maxY(self: *const Slot) f16 {
return self.y + self.height;
}
};
pub fn deinit(self: *const Spatial, alloc: Allocator) void {
pub fn deinit(self: *Spatial, alloc: Allocator) void {
alloc.free(self.slots);
self.* = undefined;
}
@@ -779,6 +998,12 @@ pub fn SplitTree(comptime V: type) type {
// Output every row
for (grid) |row| {
// We currently have a bug in our height calculation that
// results in trailing blank lines. Ignore those. We should
// really fix our height calculation instead. If someone wants
// to do that just remove this line and see the tests that fail
// and go from there.
if (row[0] == ' ') break;
try writer.writeAll(row);
}
}
@@ -914,6 +1139,7 @@ test "SplitTree: split horizontal" {
alloc,
0, // at root
.right, // split right
0.5,
&t2, // insert t2
);
defer t3.deinit();
@@ -945,6 +1171,7 @@ test "SplitTree: split horizontal" {
}
} else return error.NotFound,
.right,
0.5,
&tC,
);
defer t4.deinit();
@@ -978,6 +1205,7 @@ test "SplitTree: split horizontal" {
}
} else return error.NotFound,
.right,
0.5,
&tD,
);
defer t5.deinit();
@@ -999,6 +1227,66 @@ test "SplitTree: split horizontal" {
\\
, str);
}
// Find "previous" from D back.
{
var current: u8 = 'D';
while (current != 'A') : (current -= 1) {
it = t5.iterator();
const handle = t5.previous(
while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, &.{current})) {
break entry.handle;
}
} else return error.NotFound,
).?;
const entry = t5.nodes[handle].leaf;
try testing.expectEqualStrings(
entry.label,
&.{current - 1},
);
}
it = t5.iterator();
try testing.expect(t5.previous(
while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, &.{current})) {
break entry.handle;
}
} else return error.NotFound,
) == null);
}
// Find "next" from A forward.
{
var current: u8 = 'A';
while (current != 'D') : (current += 1) {
it = t5.iterator();
const handle = t5.next(
while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, &.{current})) {
break entry.handle;
}
} else return error.NotFound,
).?;
const entry = t5.nodes[handle].leaf;
try testing.expectEqualStrings(
entry.label,
&.{current + 1},
);
}
it = t5.iterator();
try testing.expect(t5.next(
while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, &.{current})) {
break entry.handle;
}
} else return error.NotFound,
) == null);
}
}
test "SplitTree: split vertical" {
@@ -1016,6 +1304,7 @@ test "SplitTree: split vertical" {
alloc,
0, // at root
.down, // split down
0.5,
&t2, // insert t2
);
defer t3.deinit();
@@ -1047,6 +1336,7 @@ test "SplitTree: remove leaf" {
alloc,
0, // at root
.right, // split right
0.5,
&t2, // insert t2
);
defer t3.deinit();
@@ -1092,6 +1382,7 @@ test "SplitTree: split twice, remove intermediary" {
alloc,
0, // at root
.right, // split right
0.5,
&t2, // insert t2
);
defer split1.deinit();
@@ -1101,6 +1392,7 @@ test "SplitTree: split twice, remove intermediary" {
alloc,
0, // at root
.down, // split down
0.5,
&t3, // insert t3
);
defer split2.deinit();
@@ -1154,6 +1446,125 @@ test "SplitTree: split twice, remove intermediary" {
}
}
test "SplitTree: spatial goto" {
const testing = std.testing;
const alloc = testing.allocator;
var v1: TestTree.View = .{ .label = "A" };
var t1: TestTree = try .init(alloc, &v1);
defer t1.deinit();
var v2: TestTree.View = .{ .label = "B" };
var t2: TestTree = try .init(alloc, &v2);
defer t2.deinit();
var v3: TestTree.View = .{ .label = "C" };
var t3: TestTree = try .init(alloc, &v3);
defer t3.deinit();
var v4: TestTree.View = .{ .label = "D" };
var t4: TestTree = try .init(alloc, &v4);
defer t4.deinit();
// A | B horizontal
var splitAB = try t1.split(
alloc,
0, // at root
.right, // split right
0.5,
&t2, // insert t2
);
defer splitAB.deinit();
// A | C vertical
var splitAC = try splitAB.split(
alloc,
at: {
var it = splitAB.iterator();
break :at while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, "A")) {
break entry.handle;
}
} else return error.NotFound;
},
.down, // split down
0.8,
&t3, // insert t3
);
defer splitAC.deinit();
// B | D vertical
var splitBD = try splitAC.split(
alloc,
at: {
var it = splitAB.iterator();
break :at while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, "B")) {
break entry.handle;
}
} else return error.NotFound;
},
.down, // split down
0.3,
&t4, // insert t4
);
defer splitBD.deinit();
const split = splitBD;
{
const str = try std.fmt.allocPrint(alloc, "{diagram}", .{split});
defer alloc.free(str);
try testing.expectEqualStrings(str,
\\+---++---+
\\| || B |
\\| |+---+
\\| |+---+
\\| A || |
\\| || |
\\| || |
\\| || D |
\\+---+| |
\\+---+| |
\\| C || |
\\+---++---+
\\
);
}
// Spatial C => right
{
const target = (try split.goto(
alloc,
from: {
var it = split.iterator();
break :from while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, "C")) {
break entry.handle;
}
} else return error.NotFound;
},
.{ .spatial = .right },
)).?;
const view = split.nodes[target].leaf;
try testing.expectEqualStrings(view.label, "D");
}
// Spatial D => left
{
const target = (try split.goto(
alloc,
from: {
var it = split.iterator();
break :from while (it.next()) |entry| {
if (std.mem.eql(u8, entry.view.label, "D")) {
break entry.handle;
}
} else return error.NotFound;
},
.{ .spatial = .left },
)).?;
const view = split.nodes[target].leaf;
try testing.expectEqualStrings("A", view.label);
}
}
test "SplitTree: clone empty tree" {
const testing = std.testing;
const alloc = testing.allocator;