mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-31 02:12:11 +00:00
complex minor improvement (#16086)
This commit is contained in:
@@ -42,38 +42,38 @@ template im*(arg: float32): Complex32 = complex[float32](0, arg)
|
||||
template im*(arg: float64): Complex64 = complex[float64](0, arg)
|
||||
|
||||
proc abs*[T](z: Complex[T]): T =
|
||||
## Return the distance from (0,0) to ``z``.
|
||||
## Returns the distance from (0,0) to ``z``.
|
||||
result = hypot(z.re, z.im)
|
||||
|
||||
proc abs2*[T](z: Complex[T]): T =
|
||||
## Return the squared distance from (0,0) to ``z``.
|
||||
## Returns the squared distance from (0,0) to ``z``.
|
||||
result = z.re*z.re + z.im*z.im
|
||||
|
||||
proc conjugate*[T](z: Complex[T]): Complex[T] =
|
||||
## Conjugate of complex number ``z``.
|
||||
## Conjugates of complex number ``z``.
|
||||
result.re = z.re
|
||||
result.im = -z.im
|
||||
|
||||
proc inv*[T](z: Complex[T]): Complex[T] =
|
||||
## Multiplicative inverse of complex number ``z``.
|
||||
## Multiplicatives inverse of complex number ``z``.
|
||||
conjugate(z) / abs2(z)
|
||||
|
||||
proc `==` *[T](x, y: Complex[T]): bool =
|
||||
## Compare two complex numbers ``x`` and ``y`` for equality.
|
||||
## Compares two complex numbers ``x`` and ``y`` for equality.
|
||||
result = x.re == y.re and x.im == y.im
|
||||
|
||||
proc `+` *[T](x: T; y: Complex[T]): Complex[T] =
|
||||
## Add a real number to a complex number.
|
||||
## Adds a real number to a complex number.
|
||||
result.re = x + y.re
|
||||
result.im = y.im
|
||||
|
||||
proc `+` *[T](x: Complex[T]; y: T): Complex[T] =
|
||||
## Add a complex number to a real number.
|
||||
## Adds a complex number to a real number.
|
||||
result.re = x.re + y
|
||||
result.im = x.im
|
||||
|
||||
proc `+` *[T](x, y: Complex[T]): Complex[T] =
|
||||
## Add two complex numbers.
|
||||
## Adds two complex numbers.
|
||||
result.re = x.re + y.re
|
||||
result.im = x.im + y.im
|
||||
|
||||
@@ -83,30 +83,30 @@ proc `-` *[T](z: Complex[T]): Complex[T] =
|
||||
result.im = -z.im
|
||||
|
||||
proc `-` *[T](x: T; y: Complex[T]): Complex[T] =
|
||||
## Subtract a complex number from a real number.
|
||||
## Subtracts a complex number from a real number.
|
||||
x + (-y)
|
||||
|
||||
proc `-` *[T](x: Complex[T]; y: T): Complex[T] =
|
||||
## Subtract a real number from a complex number.
|
||||
## Subtracts a real number from a complex number.
|
||||
result.re = x.re - y
|
||||
result.im = x.im
|
||||
|
||||
proc `-` *[T](x, y: Complex[T]): Complex[T] =
|
||||
## Subtract two complex numbers.
|
||||
## Subtracts two complex numbers.
|
||||
result.re = x.re - y.re
|
||||
result.im = x.im - y.im
|
||||
|
||||
proc `/` *[T](x: Complex[T]; y: T): Complex[T] =
|
||||
## Divide complex number ``x`` by real number ``y``.
|
||||
## Divides complex number ``x`` by real number ``y``.
|
||||
result.re = x.re / y
|
||||
result.im = x.im / y
|
||||
|
||||
proc `/` *[T](x: T; y: Complex[T]): Complex[T] =
|
||||
## Divide real number ``x`` by complex number ``y``.
|
||||
## Divides real number ``x`` by complex number ``y``.
|
||||
result = x * inv(y)
|
||||
|
||||
proc `/` *[T](x, y: Complex[T]): Complex[T] =
|
||||
## Divide ``x`` by ``y``.
|
||||
## Divides ``x`` by ``y``.
|
||||
var r, den: T
|
||||
if abs(y.re) < abs(y.im):
|
||||
r = y.re / y.im
|
||||
@@ -120,39 +120,39 @@ proc `/` *[T](x, y: Complex[T]): Complex[T] =
|
||||
result.im = (x.im - r * x.re) / den
|
||||
|
||||
proc `*` *[T](x: T; y: Complex[T]): Complex[T] =
|
||||
## Multiply a real number and a complex number.
|
||||
## Multiplies a real number and a complex number.
|
||||
result.re = x * y.re
|
||||
result.im = x * y.im
|
||||
|
||||
proc `*` *[T](x: Complex[T]; y: T): Complex[T] =
|
||||
## Multiply a complex number with a real number.
|
||||
## Multiplies a complex number with a real number.
|
||||
result.re = x.re * y
|
||||
result.im = x.im * y
|
||||
|
||||
proc `*` *[T](x, y: Complex[T]): Complex[T] =
|
||||
## Multiply ``x`` with ``y``.
|
||||
## Multiplies ``x`` with ``y``.
|
||||
result.re = x.re * y.re - x.im * y.im
|
||||
result.im = x.im * y.re + x.re * y.im
|
||||
|
||||
|
||||
proc `+=` *[T](x: var Complex[T]; y: Complex[T]) =
|
||||
## Add ``y`` to ``x``.
|
||||
## Adds ``y`` to ``x``.
|
||||
x.re += y.re
|
||||
x.im += y.im
|
||||
|
||||
proc `-=` *[T](x: var Complex[T]; y: Complex[T]) =
|
||||
## Subtract ``y`` from ``x``.
|
||||
## Subtracts ``y`` from ``x``.
|
||||
x.re -= y.re
|
||||
x.im -= y.im
|
||||
|
||||
proc `*=` *[T](x: var Complex[T]; y: Complex[T]) =
|
||||
## Multiply ``y`` to ``x``.
|
||||
## Multiplies ``y`` to ``x``.
|
||||
let im = x.im * y.re + x.re * y.im
|
||||
x.re = x.re * y.re - x.im * y.im
|
||||
x.im = im
|
||||
|
||||
proc `/=` *[T](x: var Complex[T]; y: Complex[T]) =
|
||||
## Divide ``x`` by ``y`` in place.
|
||||
## Divides ``x`` by ``y`` in place.
|
||||
x = x / y
|
||||
|
||||
|
||||
@@ -346,111 +346,3 @@ proc `$`*(z: Complex): string =
|
||||
result = "(" & $z.re & ", " & $z.im & ")"
|
||||
|
||||
{.pop.}
|
||||
|
||||
|
||||
when isMainModule:
|
||||
proc `=~`[T](x, y: Complex[T]): bool =
|
||||
result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6
|
||||
|
||||
proc `=~`[T](x: Complex[T]; y: T): bool =
|
||||
result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6
|
||||
|
||||
var
|
||||
z: Complex64 = complex(0.0, 0.0)
|
||||
oo: Complex64 = complex(1.0, 1.0)
|
||||
a: Complex64 = complex(1.0, 2.0)
|
||||
b: Complex64 = complex(-1.0, -2.0)
|
||||
m1: Complex64 = complex(-1.0, 0.0)
|
||||
i: Complex64 = complex(0.0, 1.0)
|
||||
one: Complex64 = complex(1.0, 0.0)
|
||||
tt: Complex64 = complex(10.0, 20.0)
|
||||
ipi: Complex64 = complex(0.0, -PI)
|
||||
|
||||
doAssert(a/2.0 =~ complex(0.5, 1.0))
|
||||
doAssert(a == a)
|
||||
doAssert((a-a) == z)
|
||||
doAssert((a+b) == z)
|
||||
doAssert((a+b) =~ 0.0)
|
||||
doAssert((a/b) == m1)
|
||||
doAssert((1.0/a) =~ complex(0.2, -0.4))
|
||||
doAssert((a*b) == complex(3.0, -4.0))
|
||||
doAssert(10.0*a == tt)
|
||||
doAssert(a*10.0 == tt)
|
||||
doAssert(tt/10.0 == a)
|
||||
doAssert(oo+(-1.0) == i)
|
||||
doAssert( (-1.0)+oo == i)
|
||||
doAssert(abs(oo) == sqrt(2.0))
|
||||
doAssert(conjugate(a) == complex(1.0, -2.0))
|
||||
doAssert(sqrt(m1) == i)
|
||||
doAssert(exp(ipi) =~ m1)
|
||||
|
||||
doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068))
|
||||
doAssert(pow(z, a) =~ complex(0.0, 0.0))
|
||||
doAssert(pow(z, z) =~ complex(1.0, 0.0))
|
||||
doAssert(pow(a, one) =~ a)
|
||||
doAssert(pow(a, m1) =~ complex(0.2, -0.4))
|
||||
doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0))
|
||||
doAssert(pow(a, 2) =~ complex(-3.0, 4.0))
|
||||
doAssert(not(pow(a, 2.0) =~ a))
|
||||
|
||||
doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090))
|
||||
doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234))
|
||||
doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811))
|
||||
|
||||
doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161))
|
||||
doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180))
|
||||
doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335))
|
||||
doAssert(cot(a) =~ 1.0 / tan(a))
|
||||
doAssert(sec(a) =~ 1.0 / cos(a))
|
||||
doAssert(csc(a) =~ 1.0 / sin(a))
|
||||
doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998))
|
||||
doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100))
|
||||
doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525))
|
||||
doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525))
|
||||
doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288))
|
||||
doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291))
|
||||
|
||||
doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778))
|
||||
doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040))
|
||||
doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725))
|
||||
doAssert(sech(a) =~ 1.0 / cosh(a))
|
||||
doAssert(csch(a) =~ 1.0 / sinh(a))
|
||||
doAssert(coth(a) =~ 1.0 / tanh(a))
|
||||
doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242))
|
||||
doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775))
|
||||
doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617))
|
||||
doAssert(arcsech(a) =~ arccosh(1.0/a))
|
||||
doAssert(arccsch(a) =~ arcsinh(1.0/a))
|
||||
doAssert(arccoth(a) =~ arctanh(1.0/a))
|
||||
|
||||
doAssert(phase(a) == 1.1071487177940904)
|
||||
var t = polar(a)
|
||||
doAssert(rect(t.r, t.phi) =~ a)
|
||||
doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817))
|
||||
|
||||
|
||||
var
|
||||
i64: Complex32 = complex(0.0f, 1.0f)
|
||||
a64: Complex32 = 2.0f*i64 + 1.0.float32
|
||||
b64: Complex32 = complex(-1.0'f32, -2.0'f32)
|
||||
|
||||
doAssert(a64 == a64)
|
||||
doAssert(a64 == -b64)
|
||||
doAssert(a64 + b64 =~ 0.0'f32)
|
||||
doAssert(not(pow(a64, b64) =~ a64))
|
||||
doAssert(pow(a64, 0.5f) =~ sqrt(a64))
|
||||
doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32))
|
||||
doAssert(sin(arcsin(b64)) =~ b64)
|
||||
doAssert(cosh(arccosh(a64)) =~ a64)
|
||||
|
||||
doAssert(phase(a64) - 1.107149f < 1e-6)
|
||||
var t64 = polar(a64)
|
||||
doAssert(rect(t64.r, t64.phi) =~ a64)
|
||||
doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f))
|
||||
doAssert(sizeof(a64) == 8)
|
||||
doAssert(sizeof(a) == 16)
|
||||
|
||||
doAssert 123.0.im + 456.0 == complex64(456, 123)
|
||||
|
||||
var localA = complex(0.1'f32)
|
||||
doAssert localA.im is float32
|
||||
|
||||
108
tests/stdlib/tcomplex.nim
Normal file
108
tests/stdlib/tcomplex.nim
Normal file
@@ -0,0 +1,108 @@
|
||||
import complex, math
|
||||
|
||||
|
||||
proc `=~`[T](x, y: Complex[T]): bool =
|
||||
result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6
|
||||
|
||||
proc `=~`[T](x: Complex[T]; y: T): bool =
|
||||
result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6
|
||||
|
||||
var
|
||||
z: Complex64 = complex(0.0, 0.0)
|
||||
oo: Complex64 = complex(1.0, 1.0)
|
||||
a: Complex64 = complex(1.0, 2.0)
|
||||
b: Complex64 = complex(-1.0, -2.0)
|
||||
m1: Complex64 = complex(-1.0, 0.0)
|
||||
i: Complex64 = complex(0.0, 1.0)
|
||||
one: Complex64 = complex(1.0, 0.0)
|
||||
tt: Complex64 = complex(10.0, 20.0)
|
||||
ipi: Complex64 = complex(0.0, -PI)
|
||||
|
||||
doAssert(a/2.0 =~ complex(0.5, 1.0))
|
||||
doAssert(a == a)
|
||||
doAssert((a-a) == z)
|
||||
doAssert((a+b) == z)
|
||||
doAssert((a+b) =~ 0.0)
|
||||
doAssert((a/b) == m1)
|
||||
doAssert((1.0/a) =~ complex(0.2, -0.4))
|
||||
doAssert((a*b) == complex(3.0, -4.0))
|
||||
doAssert(10.0*a == tt)
|
||||
doAssert(a*10.0 == tt)
|
||||
doAssert(tt/10.0 == a)
|
||||
doAssert(oo+(-1.0) == i)
|
||||
doAssert( (-1.0)+oo == i)
|
||||
doAssert(abs(oo) == sqrt(2.0))
|
||||
doAssert(conjugate(a) == complex(1.0, -2.0))
|
||||
doAssert(sqrt(m1) == i)
|
||||
doAssert(exp(ipi) =~ m1)
|
||||
|
||||
doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068))
|
||||
doAssert(pow(z, a) =~ complex(0.0, 0.0))
|
||||
doAssert(pow(z, z) =~ complex(1.0, 0.0))
|
||||
doAssert(pow(a, one) =~ a)
|
||||
doAssert(pow(a, m1) =~ complex(0.2, -0.4))
|
||||
doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0))
|
||||
doAssert(pow(a, 2) =~ complex(-3.0, 4.0))
|
||||
doAssert(not(pow(a, 2.0) =~ a))
|
||||
|
||||
doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090))
|
||||
doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234))
|
||||
doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811))
|
||||
|
||||
doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161))
|
||||
doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180))
|
||||
doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335))
|
||||
doAssert(cot(a) =~ 1.0 / tan(a))
|
||||
doAssert(sec(a) =~ 1.0 / cos(a))
|
||||
doAssert(csc(a) =~ 1.0 / sin(a))
|
||||
doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998))
|
||||
doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100))
|
||||
doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525))
|
||||
doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525))
|
||||
doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288))
|
||||
doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291))
|
||||
|
||||
doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778))
|
||||
doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040))
|
||||
doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725))
|
||||
doAssert(sech(a) =~ 1.0 / cosh(a))
|
||||
doAssert(csch(a) =~ 1.0 / sinh(a))
|
||||
doAssert(coth(a) =~ 1.0 / tanh(a))
|
||||
doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242))
|
||||
doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775))
|
||||
doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617))
|
||||
doAssert(arcsech(a) =~ arccosh(1.0/a))
|
||||
doAssert(arccsch(a) =~ arcsinh(1.0/a))
|
||||
doAssert(arccoth(a) =~ arctanh(1.0/a))
|
||||
|
||||
doAssert(phase(a) == 1.1071487177940904)
|
||||
var t = polar(a)
|
||||
doAssert(rect(t.r, t.phi) =~ a)
|
||||
doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817))
|
||||
|
||||
|
||||
var
|
||||
i64: Complex32 = complex(0.0f, 1.0f)
|
||||
a64: Complex32 = 2.0f*i64 + 1.0.float32
|
||||
b64: Complex32 = complex(-1.0'f32, -2.0'f32)
|
||||
|
||||
doAssert(a64 == a64)
|
||||
doAssert(a64 == -b64)
|
||||
doAssert(a64 + b64 =~ 0.0'f32)
|
||||
doAssert(not(pow(a64, b64) =~ a64))
|
||||
doAssert(pow(a64, 0.5f) =~ sqrt(a64))
|
||||
doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32))
|
||||
doAssert(sin(arcsin(b64)) =~ b64)
|
||||
doAssert(cosh(arccosh(a64)) =~ a64)
|
||||
|
||||
doAssert(phase(a64) - 1.107149f < 1e-6)
|
||||
var t64 = polar(a64)
|
||||
doAssert(rect(t64.r, t64.phi) =~ a64)
|
||||
doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f))
|
||||
doAssert(sizeof(a64) == 8)
|
||||
doAssert(sizeof(a) == 16)
|
||||
|
||||
doAssert 123.0.im + 456.0 == complex64(456, 123)
|
||||
|
||||
var localA = complex(0.1'f32)
|
||||
doAssert localA.im is float32
|
||||
Reference in New Issue
Block a user