fixes#24526, follows up #23101
The `shallowCopy` calls do not keep the original node's children, they
just make a new seq with the same length, so the `Ident "*"` node from
the original postfix nodes was not carried over, making it `nil` and
causing the segfault.
(cherry picked from commit b529f69518)
refs #24503
Infinite recursions currently are not tracked separately from infinite
loops, because they also increase the loop counter. However the max
infinite loop count is very high by default (10 million) and does not
reliably catch infinite recursions before consuming a lot of memory. So
to protect against infinite recursions, we separately track call depth,
and add a separate option for the maximum call depth, much lower than
the maximum iteration count by default (2000, the same as
`nimCallDepthLimit`).
---------
Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
(cherry picked from commit 6f4106bf5d)
`curTimeout` is calculated incorrectly. So this PR fixes it.
This PR also replaces `now()` with `getMonoTime()`.
(cherry picked from commit bbf6a62c90)
fixes#24492
Kind of a goofy way of doing this, but we count how many derefs were
used for the first parameter before calling `builtinFieldAccess`, then
count after, and if there are more now than before, we remove the added
derefs. I thought maybe getting rid of #18298 would simplify it but
maybe this would still be the best way.
For better encapsulation we could make `dotTransformation` take an
`nOrig` param instead but this would be less efficient since it would
need a copy, though `semAsgn` already makes one.
(cherry picked from commit 2529f33760)
issue 1 - statics in the type:
This probably only handles simple cases. It's probably too accepting
only comparing the base, but that should only affect candidate selection
I think.
issue 2 - `tyArray` of length 3:
This is just a work around since I couldn't get the fix right in
previous PR
issue 3 - shadowing:
The part in `concepts.nim` that iterates candidates does not consider
imported idents if at least once module level ident matches. It does not
have to match in any other way then name.
EDIT: 2 more
issue 4 - composite typeclasses:
when declared in both the concept and the `proc` can cause problems
issue 5 - recursion:
simple recursion and scenarios where more than one concepts recurse
together (only tested two)
(cherry picked from commit e479151473)
fixes#24472
Excluding variables which are initialized in the nimvm branch so that
they won't interfere the other branch
(cherry picked from commit e7f48cdd5c)
When parsing `a = 1` with `langPython`, Eof is reported unexpectedly.
Fix: allow other languages to fallback to "Identifier" when it is not a
keyword.
This patch is useful as this is a highlighter. `Eof` as annoying.
(cherry picked from commit 6112c51e78)
fixes#24449
The standalone `seq` type is a `tyBuiltInTypeClass` with a single child
of kind `tySequence`, which itself has no children. This is also the
case for most other `tyBuiltInTypeClass` kinds. However this can cause a
crash in sigmatch when calling `isEmptyContainer` on this child type,
which expects the sequence type to have children. This check was added
in #5557 to prevent empty collections like `@[]` from matching their
respective typeclass, but it's not useful when matching against another
typeclass (which is done here to resolve an ambiguity). So to avoid the
crash, this empty container check is disabled when matching against
another typeclass.
(cherry picked from commit 96043bdbb7)
I think this might not be a comprehensive solution to dealing with
`tyGenericBody` but we take a step forward
#24451
(cherry picked from commit 08c2a1741d)
closes#22369, closes#23197, closes#24385, refs #21328
According to #21328 the standard library on Unix should be installed in
`/usr/lib/nim/lib`, however the installer was not updated for this
change, hence the problem as described in
https://github.com/nim-lang/Nim/issues/23197#issuecomment-2031386896.
Have not tested if this fixes the problem but the comment heavily
implies it does. The problem is also in 2.0 so it could be backported
but I can't say for sure that it works and doesn't break anything.
(cherry picked from commit 33e455c986)
fixes#24450
The new concepts were previously not included in
[containsGenericType][1] which prevents them from being instantiated.
Here they are included by being added to `tyTypeClasses` though this
doesn't have to be done, they can also be added manually to
`containsGenericTypeIter`, but this might be too specific.
[1]:
a2031ec6cf/compiler/types.nim (L1507-L1517)
(cherry picked from commit e28d2f42e9)
closes#24372, refs #20091
This was added in #20091 for some reason but doesn't actually work and
only makes error messages more obscure. So for now, it's disabled.
Can also be backported to 2.0 if necessary.
(cherry picked from commit a610f23060)
follows up #24425, fixes#18861, fixes#22445
Since #24425 generic object and distinct types now accurately link back
to their generic instantiations. To work around this issue previously,
type matching checked if generic objects/distinct types were
*structurally* equal, which caused false positives with types that
didn't use generic parameters in their structures. This structural check
is now removed, in cases where generic objects/distinct types require a
nontrivial equality check, the generic parameters of the `typeInst`
fields are checked for equality instead.
The check is copied from `tyGenericInst`, but the check in
`tyGenericInst` is not always sufficient as this type can be skipped or
unreachable in the case of `ref object`s.
(cherry picked from commit a2031ec6cf)
fixes#22479, fixes#24374, depends on #24429 and #24430
When instantiating generic types which directly have nominal types
(object, distinct, ref/ptr object but not enums[^1]) as their values,
the nominal type is now copied (in the case of ref objects, its child as
well) so that it receives a fresh ID and `typeInst` field. Previously
this only happened if it contained any generic types in its structure,
as is the case for all other types.
This solves #22479 and #24374 by virtue of the IDs being unique, which
is what destructors check for. Technically types containing generic
param fields work for the same reason. There is also the benefit that
the `typeInst` field is correct. However issues like #22445 aren't
solved because the compiler still uses structural object equality checks
for inheritance etc. which could be removed in a later PR.
Also fixes a pre-existing issue where destructors bound to object types
with generic fields would not error when attempting to define a user
destructor after the fact, but the error message doesn't show where the
implicit destructor was created now since it was only created for
another instance. To do this, a type flag is used that marks the generic
type symbol when a generic instance has a destructor created. Reusing
`tfCheckedForDestructor` for this doesn't work.
Maybe there is a nicer design that isn't an overreliance on the ID
mechanism, but the shortcomings of `tyGenericInst` are too ingrained in
the compiler to use for this. I thought about maybe adding something
like `tyNominalGenericInst`, but it's really much easier if the nominal
type itself directly contains the information of its generic parameters,
or at least its "symbol", which the design is heading towards.
[^1]: See [this
test](21420d8b09/lib/std/enumutils.nim (L102))
in enumutils. The field symbols `b0`/`b1` always have the uninstantiated
type `B` because enum fields don't expect to be generic, so no generic
instance of `B` matches its own symbols. Wouldn't expect anyone to use
generic enums but maybe someone does.
(cherry picked from commit 05c74d6844)
fixes#17571
Objects in the VM are represented as object constructor nodes that
contain every single field, including ones in different case branches.
This is so that every field has a unique invariant index in the object
constructor that can be written to and read from. However when
converting this node back into semantic code, fields from inactive case
branches can remain in the constructor which causes bad codegen,
generating assignments to fields from other case branches.
To fix this, fields from inactive branches are now detected in
`semmacrosanity.annotateType` (called in `fixupTypeAfterEval`) and
marked to prevent the codegen of their assignments. In #24441 these
fields were excluded from the resulting node, but this causes issues
when the node is directly supposed to go back into the VM, for example
as `const` values. I don't know if this is the only case where this
happens, so I wasn't sure about how to keep that implementation working.
(cherry picked from commit 75b512bc6a)
fixes#16413
`semIterator` checks if the original iterator passed to it has no body,
but it should check the processed node created by `semProcAux`.
(cherry picked from commit e239968b80)
fixes#24402
```nim
iterator myPairsInline*[T](twoDarray: seq[seq[T]]): (int, seq[T]) {.inline.} =
for indexValuePair in twoDarray.pairs:
yield indexValuePair
proc innerTestTotalMem() =
var my2dArray: seq[seq[int32]] = @[]
# fill with some data...
for i in 0'i32..100:
var z = @[i, i+1]
my2dArray.add z
for oneDindex, innerArray in myPairsInline(my2dArray):
discard
innerTestTotalMem()
```
In `for oneDindex, innerArray in myPairsInline(my2dArray)`, `oneDindex`
and `innerArray` becomes `cursors` because they satisfy the criterion of
`isSimpleIteratorVar`. On the one hand, it is not correct to have them
point to the temporary generated by tuple unpacking, which left the
memory of the temporary uncleaned up. On the other hand, we don't need
to generate a temporary for a symbol node when unpacking the tuple.
(cherry picked from commit 21420d8b09)
split from #24425
Matching `tyGenericBody` performs a match on the last child of the
generic body, in this case the uninstantied `tyObject` type. If the
object contains no generic fields, this ends up being the same type as
all instantiated ones, but if it does, a new type is created. This fails
the `sameObjectTypes` check that subtype matching for object types uses.
To fix this, also consider that the pattern type could be the generic
uninstantiated object type of the matched type in subtype matching.
(cherry picked from commit 511ab72342)
split from #24425
The added test did not work previously. The result of `getTypeImpl` is
the uninstantiated AST of the original type symbol, and the macro
attempts to use this type for the result. To fix the issue, the provided
`typedesc` argument is used instead.
(cherry picked from commit 45e21ce8f1)
fixes#17958
In `transf`, conversions in subscript expressions are skipped (with
`skipConv`'s rules). This is because array indexing can produce
conversions to the range type that is the array's index type, which
causes a `RangeDefect` rather than an `IndexDefect` (and also
`--rangeChecks` and `--indexChecks` are both considered). However this
causes problems when explicit conversions are used, between types of
different bitsizes, because those also get skipped.
To fix this, we only skip the conversion if:
* it's a hidden (implicit) conversion
* it's a range check conversion (produces `nkChckRange`)
* the subscript is on an array type and the result type of the
conversion has the same bounds as the array index type
And `skipConv` rules also still apply (int/float classification).
Another idea would be to prevent the implicit conversion to the array
index type from being generated. But there is no good way to do this:
matching to the base type instead prevents types like `uint32` from
implicitly converting (i.e. it can convert to `range[0..3]` but not
`int`), and analyzing whether this is an array bound check is easier in
`transf`, since `sigmatch` just produces a type conversion.
The rules for skipping the conversion could also receive some other
tweaks: We could add a rule that changing bitsizes also doesn't skip the
conversion, but this breaks the `uint32` case. We could simplify it to
only removing implicit skips to specifically fix#17958, but this is
wrong in general.
We could also add something like `nkChckIndex` that generates index
errors instead but this is weird when it doesn't have access to the
collection type and it might be overkill.
(cherry picked from commit 76c5f16ac5)
fixes#14067, fixes#15004, fixes#19019
Anonymous procs are [added to
scope](8091d76306/compiler/semstmts.nim (L2466))
with the name `:anonymous`. This means that if they have the same
signature in a scope, they can consider each other as redefinitions. To
prevent this, mark their symbols as `sfGenSym` so they do not get added
to scope or cause any name conflicts. The commented out `and not isAnon`
check wouldn't work because `isAnon` would not be true if the proc is
being resemmed, in which case the name field in the proc AST would have
the symbol of the anonymous proc rather than being empty.
There is a separate problem of default values in generic/normal procs
not opening new scopes which is partially responsible for #19019.
(cherry picked from commit 3e47725c08)
fixes#24415
Since #23978 (which is in 2.0), all generic types that alias to another
type now insert a `tyAlias` layer in their value. However the
`skipGenericAlias` etc code which `sigmatch` uses is not updated for
this, so `tyAlias` is now skipped in these.
The relevant code in sigmatch is:
67ad1ae159/compiler/sigmatch.nim (L1668-L1673)
This behavior is also suspicious IMO, not skipping a structural
`tyGenericInst` alias can be useful for code like #10220, but this is
currently arbitrarily decided based on "depth" and whether the alias is
to another `tyGenericInst` type or not. Maybe in the future we could
enforce the use of a nominal type.
(cherry picked from commit 45b8434c7d)
fixes issue described in https://forum.nim-lang.org/t/12579
In #24065 explicit generic parameter matching was made to fail matches
on arguments with unresolved types in generic contexts (the sigmatch
diff, following #24010), similar to what is done for regular calls since
#22029. However unlike regular calls, a failed match in a generic
context for a standalone explicit generic instantiation did not convert
the expression into one with `tyFromExpr` type, which means it would
error immediately given any unresolved parameter. This is now done to
fix the issue.
For explicit generic instantiations on single non-overloaded symbols, a
successful match is still instantiated. For multiple overloads (i.e.
symchoice), if any of the overloads fail the match, the entire
expression is considered untyped and any instantiations are not used, so
as to not void overloads that would match later. This means even
symchoices without unresolved arguments aren't instantiated, which may
be too restrictive, but it could also be too lenient and we might need
to make symchoice instantiations always untyped. The behavior for
symchoice is not sound anyway given it causes #9997 so this is something
to consider for a redesign.
Diff follows #24276.
(cherry picked from commit 67ad1ae159)