Add @(require_results) to core:math/ease

This commit is contained in:
gingerBill
2023-05-22 20:43:19 +01:00
parent 248f14a1ef
commit 40a8ed535a

View File

@@ -11,11 +11,13 @@ import "core:time"
// with additional enum based call
// Modeled after the parabola y = x^2
@(require_results)
quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p
}
// Modeled after the parabola y = -x^2 + 2x
@(require_results)
quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return -(p * (p - 2))
}
@@ -23,6 +25,7 @@ quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(
// Modeled after the piecewise quadratic
// y = (1/2)((2x)^2) ; [0, 0.5)
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
@(require_results)
quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 2 * p * p
@@ -32,11 +35,13 @@ quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_flo
}
// Modeled after the cubic y = x^3
@(require_results)
cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p
}
// Modeled after the cubic y = (x - 1)^3 + 1
@(require_results)
cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f + 1
@@ -45,6 +50,7 @@ cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
// Modeled after the piecewise cubic
// y = (1/2)((2x)^3) ; [0, 0.5)
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
@(require_results)
cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 4 * p * p * p
@@ -55,11 +61,13 @@ cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T
}
// Modeled after the quartic x^4
@(require_results)
quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p * p
}
// Modeled after the quartic y = 1 - (x - 1)^4
@(require_results)
quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f * (1 - p) + 1
@@ -68,6 +76,7 @@ quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T)
// Modeled after the piecewise quartic
// y = (1/2)((2x)^4) ; [0, 0.5)
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
@(require_results)
quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 8 * p * p * p * p
@@ -78,11 +87,13 @@ quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float
}
// Modeled after the quintic y = x^5
@(require_results)
quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p * p * p
}
// Modeled after the quintic y = (x - 1)^5 + 1
@(require_results)
quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f * f * f + 1
@@ -91,6 +102,7 @@ quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T)
// Modeled after the piecewise quintic
// y = (1/2)((2x)^5) ; [0, 0.5)
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
@(require_results)
quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 16 * p * p * p * p * p
@@ -101,26 +113,31 @@ quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float
}
// Modeled after quarter-cycle of sine wave
@(require_results)
sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin((p - 1) * PI_2) + 1
}
// Modeled after quarter-cycle of sine wave (different phase)
@(require_results)
sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(p * PI_2)
}
// Modeled after half sine wave
@(require_results)
sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 0.5 * (1 - math.cos(p * math.PI))
}
// Modeled after shifted quadrant IV of unit circle
@(require_results)
circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 1 - math.sqrt(1 - (p * p))
}
// Modeled after shifted quadrant II of unit circle
@(require_results)
circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sqrt((2 - p) * p)
}
@@ -128,6 +145,7 @@ circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T
// Modeled after the piecewise circular function
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
@(require_results)
circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * (1 - math.sqrt(1 - 4 * (p * p)))
@@ -137,11 +155,13 @@ circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_floa
}
// Modeled after the exponential function y = 2^(10(x - 1))
@(require_results)
exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p == 0.0 ? p : math.pow(2, 10 * (p - 1))
}
// Modeled after the exponential function y = -2^(-10x) + 1
@(require_results)
exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p == 1.0 ? p : 1 - math.pow(2, -10 * p)
}
@@ -149,6 +169,7 @@ exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_floa
// Modeled after the piecewise exponential
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
@(require_results)
exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p == 0.0 || p == 1.0 {
return p
@@ -162,11 +183,13 @@ exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_f
}
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
@(require_results)
elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1))
}
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
@(require_results)
elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1
}
@@ -174,6 +197,7 @@ elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T)
// Modeled after the piecewise exponentially-damped sine wave:
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
@(require_results)
elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1))
@@ -183,11 +207,13 @@ elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float
}
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
@(require_results)
back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p - p * math.sin(p * math.PI)
}
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
@(require_results)
back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := 1 - p
return 1 - (f * f * f - f * math.sin(f * math.PI))
@@ -196,6 +222,7 @@ back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
// Modeled after the piecewise overshooting cubic function:
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
@(require_results)
back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
f := 2 * p
@@ -206,10 +233,12 @@ back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T)
}
}
@(require_results)
bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 1 - bounce_out(1 - p)
}
@(require_results)
bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 4/11.0 {
return (121 * p * p)/16.0
@@ -222,6 +251,7 @@ bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T)
}
}
@(require_results)
bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * bounce_in(p*2)
@@ -276,50 +306,51 @@ Ease :: enum {
Bounce_In_Out,
}
@(require_results)
ease :: proc "contextless" (type: Ease, p: $T) -> T
where intrinsics.type_is_float(T) {
switch type {
case .Linear: return p
case .Quadratic_In: return quadratic_in(p)
case .Quadratic_Out: return quadratic_out(p)
case .Quadratic_In_Out: return quadratic_in_out(p)
case .Linear: return p
case .Cubic_In: return cubic_in(p)
case .Cubic_Out: return cubic_out(p)
case .Cubic_In_Out: return cubic_in_out(p)
case .Quadratic_In: return quadratic_in(p)
case .Quadratic_Out: return quadratic_out(p)
case .Quadratic_In_Out: return quadratic_in_out(p)
case .Quartic_In: return quartic_in(p)
case .Quartic_Out: return quartic_out(p)
case .Quartic_In_Out: return quartic_in_out(p)
case .Cubic_In: return cubic_in(p)
case .Cubic_Out: return cubic_out(p)
case .Cubic_In_Out: return cubic_in_out(p)
case .Quintic_In: return quintic_in(p)
case .Quintic_Out: return quintic_out(p)
case .Quintic_In_Out: return quintic_in_out(p)
case .Quartic_In: return quartic_in(p)
case .Quartic_Out: return quartic_out(p)
case .Quartic_In_Out: return quartic_in_out(p)
case .Sine_In: return sine_in(p)
case .Sine_Out: return sine_out(p)
case .Sine_In_Out: return sine_in_out(p)
case .Quintic_In: return quintic_in(p)
case .Quintic_Out: return quintic_out(p)
case .Quintic_In_Out: return quintic_in_out(p)
case .Circular_In: return circular_in(p)
case .Circular_Out: return circular_out(p)
case .Circular_In_Out: return circular_in_out(p)
case .Sine_In: return sine_in(p)
case .Sine_Out: return sine_out(p)
case .Sine_In_Out: return sine_in_out(p)
case .Exponential_In: return exponential_in(p)
case .Exponential_Out: return exponential_out(p)
case .Exponential_In_Out: return exponential_in_out(p)
case .Circular_In: return circular_in(p)
case .Circular_Out: return circular_out(p)
case .Circular_In_Out: return circular_in_out(p)
case .Elastic_In: return elastic_in(p)
case .Elastic_Out: return elastic_out(p)
case .Elastic_In_Out: return elastic_in_out(p)
case .Exponential_In: return exponential_in(p)
case .Exponential_Out: return exponential_out(p)
case .Exponential_In_Out: return exponential_in_out(p)
case .Back_In: return back_in(p)
case .Back_Out: return back_out(p)
case .Back_In_Out: return back_in_out(p)
case .Elastic_In: return elastic_in(p)
case .Elastic_Out: return elastic_out(p)
case .Elastic_In_Out: return elastic_in_out(p)
case .Bounce_In: return bounce_in(p)
case .Bounce_Out: return bounce_out(p)
case .Bounce_In_Out: return bounce_in_out(p)
case .Back_In: return back_in(p)
case .Back_Out: return back_out(p)
case .Back_In_Out: return back_in_out(p)
case .Bounce_In: return bounce_in(p)
case .Bounce_Out: return bounce_out(p)
case .Bounce_In_Out: return bounce_in_out(p)
}
// in case type was invalid
@@ -353,6 +384,7 @@ Flux_Tween :: struct($T: typeid) {
}
// init flux map to a float type and a wanted cap
@(require_results)
flux_init :: proc($T: typeid, value_capacity := 8) -> Flux_Map(T) where intrinsics.type_is_float(T) {
return {
values = make(map[^T]Flux_Tween(T), value_capacity),
@@ -374,6 +406,7 @@ flux_clear :: proc(flux: ^Flux_Map($T)) where intrinsics.type_is_float(T) {
// append / overwrite existing tween value to parameters
// rest is initialized in flux_tween_init, inside update
// return value can be used to set callbacks
@(require_results)
flux_to :: proc(
flux: ^Flux_Map($T),
value: ^T,
@@ -475,6 +508,7 @@ flux_update :: proc(flux: ^Flux_Map($T), dt: f64) where intrinsics.type_is_float
// stop a specific key inside the map
// returns true when it successfully removed the key
@(require_results)
flux_stop :: proc(flux: ^Flux_Map($T), key: ^T) -> bool where intrinsics.type_is_float(T) {
if key in flux.values {
delete_key(&flux.values, key)
@@ -486,6 +520,7 @@ flux_stop :: proc(flux: ^Flux_Map($T), key: ^T) -> bool where intrinsics.type_is
// returns the amount of time left for the tween animation, if the key exists in the map
// returns 0 if the tween doesnt exist on the map
@(require_results)
flux_tween_time_left :: proc(flux: Flux_Map($T), key: ^T) -> f64 {
if tween, ok := flux.values[key]; ok {
return ((1 - tween.progress) * tween.rate) + tween.delay