cleanup langauge / errors about table vs swizzle

This commit is contained in:
Jon Lipstate
2025-07-16 23:43:41 -07:00
parent ecd41b155d
commit 6c81df82a6
2 changed files with 47 additions and 47 deletions

View File

@@ -1157,27 +1157,27 @@ gb_internal bool check_builtin_simd_operation(CheckerContext *c, Operand *operan
return false;
}
Operand table = {};
Operand src = {};
Operand indices = {};
check_expr(c, &table, ce->args[0]); if (table.mode == Addressing_Invalid) return false;
check_expr_with_type_hint(c, &indices, ce->args[1], table.type); if (indices.mode == Addressing_Invalid) return false;
check_expr(c, &src, ce->args[0]); if (src.mode == Addressing_Invalid) return false;
check_expr_with_type_hint(c, &indices, ce->args[1], src.type); if (indices.mode == Addressing_Invalid) return false;
if (!is_type_simd_vector(table.type)) {
error(table.expr, "'%.*s' expected a simd vector type for runtime swizzle", LIT(builtin_name));
if (!is_type_simd_vector(src.type)) {
error(src.expr, "'%.*s' expected first argument to be a simd vector", LIT(builtin_name));
return false;
}
if (!is_type_simd_vector(indices.type)) {
error(indices.expr, "'%.*s' expected a simd vector type for indices", LIT(builtin_name));
error(indices.expr, "'%.*s' expected second argument (indices) to be a simd vector", LIT(builtin_name));
return false;
}
Type *table_elem = base_array_type(table.type);
Type *src_elem = base_array_type(src.type);
Type *indices_elem = base_array_type(indices.type);
if (!is_type_integer(table_elem)) {
gbString table_str = type_to_string(table.type);
error(table.expr, "'%.*s' expected table to be a simd vector of integers, got '%s'", LIT(builtin_name), table_str);
gb_string_free(table_str);
if (!is_type_integer(src_elem)) {
gbString src_str = type_to_string(src.type);
error(src.expr, "'%.*s' expected first argument to be a simd vector of integers, got '%s'", LIT(builtin_name), src_str);
gb_string_free(src_str);
return false;
}
@@ -1188,17 +1188,17 @@ gb_internal bool check_builtin_simd_operation(CheckerContext *c, Operand *operan
return false;
}
if (!are_types_identical(table.type, indices.type)) {
gbString table_str = type_to_string(table.type);
if (!are_types_identical(src.type, indices.type)) {
gbString src_str = type_to_string(src.type);
gbString indices_str = type_to_string(indices.type);
error(indices.expr, "'%.*s' expected table and indices to have the same type, got '%s' vs '%s'", LIT(builtin_name), table_str, indices_str);
error(indices.expr, "'%.*s' expected both arguments to have the same type, got '%s' vs '%s'", LIT(builtin_name), src_str, indices_str);
gb_string_free(indices_str);
gb_string_free(table_str);
gb_string_free(src_str);
return false;
}
operand->mode = Addressing_Value;
operand->type = table.type;
operand->type = src.type;
return true;
}

View File

@@ -1723,7 +1723,7 @@ gb_internal lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAn
case BuiltinProc_simd_runtime_swizzle:
{
LLVMValueRef table = arg0.value;
LLVMValueRef src = arg0.value;
LLVMValueRef indices = lb_build_expr(p, ce->args[1]).value;
Type *vt = arg0.type;
@@ -1807,7 +1807,7 @@ gb_internal lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAn
}
if (use_hardware_runtime_swizzle && intrinsic_name != nullptr) {
// Use dedicated hardware table lookup instruction
// Use dedicated hardware swizzle instruction
// Check if required target features are enabled
bool features_enabled = true;
@@ -1834,7 +1834,7 @@ gb_internal lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAn
}
}
} else if (build_context.metrics.arch == TargetArch_arm64 || build_context.metrics.arch == TargetArch_arm32) {
// ARM/ARM64 feature checking - NEON is required for all table lookups
// ARM/ARM64 feature checking - NEON is required for all table/swizzle ops
if (!check_target_feature_is_enabled(str_lit("neon"), nullptr)) {
features_enabled = false;
}
@@ -1856,77 +1856,77 @@ gb_internal lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAn
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("min-legal-vector-width"), str_lit("512"));
}
} else if (build_context.metrics.arch == TargetArch_arm64) {
// ARM64 function attributes - enable NEON for table lookup instructions
// ARM64 function attributes - enable NEON for swizzle instructions
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("target-features"), str_lit("+neon"));
// Set appropriate vector width for multi-table operations
// Set appropriate vector width for multi-swizzle operations
if (count >= 32) {
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("min-legal-vector-width"), str_lit("256"));
}
} else if (build_context.metrics.arch == TargetArch_arm32) {
// ARM32 function attributes - enable NEON for table lookup instructions
// ARM32 function attributes - enable NEON for swizzle instructions
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("target-features"), str_lit("+neon"));
}
// Handle ARM's multi-table intrinsics by splitting the table vector
// Handle ARM's multi-swizzle intrinsics by splitting the src vector
if (build_context.metrics.arch == TargetArch_arm64 && count > 16) {
// ARM64 TBL2/TBL3/TBL4: Split table into multiple 16-byte vectors
// ARM64 TBL2/TBL3/TBL4: Split src into multiple 16-byte vectors
int num_tables = cast(int)(count / 16);
GB_ASSERT_MSG(count % 16 == 0, "ARM64 table size must be multiple of 16 bytes, got %lld bytes", count);
GB_ASSERT_MSG(count % 16 == 0, "ARM64 src size must be multiple of 16 bytes, got %lld bytes", count);
GB_ASSERT_MSG(num_tables <= 4, "ARM64 NEON supports maximum 4 tables (tbl4), got %d tables for %lld-byte vector", num_tables, count);
LLVMValueRef table_parts[4]; // Max 4 tables for tbl4
LLVMValueRef src_parts[4]; // Max 4 tables for tbl4
for (int i = 0; i < num_tables; i++) {
// Extract 16-byte slice from the larger table
// Extract 16-byte slice from the larger src
LLVMValueRef indices_for_extract[16];
for (int j = 0; j < 16; j++) {
indices_for_extract[j] = LLVMConstInt(LLVMInt32TypeInContext(p->module->ctx), i * 16 + j, false);
}
LLVMValueRef extract_mask = LLVMConstVector(indices_for_extract, 16);
table_parts[i] = LLVMBuildShuffleVector(p->builder, table, LLVMGetUndef(LLVMTypeOf(table)), extract_mask, "");
src_parts[i] = LLVMBuildShuffleVector(p->builder, src, LLVMGetUndef(LLVMTypeOf(src)), extract_mask, "");
}
// Call appropriate ARM64 tbl intrinsic
if (count == 32) {
LLVMValueRef args[3] = { table_parts[0], table_parts[1], indices };
LLVMValueRef args[3] = { src_parts[0], src_parts[1], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 3, nullptr, 0);
} else if (count == 48) {
LLVMValueRef args[4] = { table_parts[0], table_parts[1], table_parts[2], indices };
LLVMValueRef args[4] = { src_parts[0], src_parts[1], src_parts[2], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 4, nullptr, 0);
} else if (count == 64) {
LLVMValueRef args[5] = { table_parts[0], table_parts[1], table_parts[2], table_parts[3], indices };
LLVMValueRef args[5] = { src_parts[0], src_parts[1], src_parts[2], src_parts[3], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 5, nullptr, 0);
}
} else if (build_context.metrics.arch == TargetArch_arm32 && count > 8) {
// ARM32 VTBL2/VTBL3/VTBL4: Split table into multiple 8-byte vectors
// ARM32 VTBL2/VTBL3/VTBL4: Split src into multiple 8-byte vectors
int num_tables = cast(int)count / 8;
GB_ASSERT_MSG(count % 8 == 0, "ARM32 table size must be multiple of 8 bytes, got %lld bytes", count);
GB_ASSERT_MSG(count % 8 == 0, "ARM32 src size must be multiple of 8 bytes, got %lld bytes", count);
GB_ASSERT_MSG(num_tables <= 4, "ARM32 NEON supports maximum 4 tables (vtbl4), got %d tables for %lld-byte vector", num_tables, count);
LLVMValueRef table_parts[4]; // Max 4 tables for vtbl4
LLVMValueRef src_parts[4]; // Max 4 tables for vtbl4
for (int i = 0; i < num_tables; i++) {
// Extract 8-byte slice from the larger table
// Extract 8-byte slice from the larger src
LLVMValueRef indices_for_extract[8];
for (int j = 0; j < 8; j++) {
indices_for_extract[j] = LLVMConstInt(LLVMInt32TypeInContext(p->module->ctx), i * 8 + j, false);
}
LLVMValueRef extract_mask = LLVMConstVector(indices_for_extract, 8);
table_parts[i] = LLVMBuildShuffleVector(p->builder, table, LLVMGetUndef(LLVMTypeOf(table)), extract_mask, "");
src_parts[i] = LLVMBuildShuffleVector(p->builder, src, LLVMGetUndef(LLVMTypeOf(src)), extract_mask, "");
}
// Call appropriate ARM32 vtbl intrinsic
if (count == 16) {
LLVMValueRef args[3] = { table_parts[0], table_parts[1], indices };
LLVMValueRef args[3] = { src_parts[0], src_parts[1], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 3, nullptr, 0);
} else if (count == 24) {
LLVMValueRef args[4] = { table_parts[0], table_parts[1], table_parts[2], indices };
LLVMValueRef args[4] = { src_parts[0], src_parts[1], src_parts[2], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 4, nullptr, 0);
} else if (count == 32) {
LLVMValueRef args[5] = { table_parts[0], table_parts[1], table_parts[2], table_parts[3], indices };
LLVMValueRef args[5] = { src_parts[0], src_parts[1], src_parts[2], src_parts[3], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 5, nullptr, 0);
}
} else {
// Single-table case (x86, WebAssembly, ARM single-table)
LLVMValueRef args[2] = { table, indices };
// Single runtime swizzle case (x86, WebAssembly, ARM single-table)
LLVMValueRef args[2] = { src, indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, gb_count_of(args), nullptr, 0);
}
return res;
@@ -1948,16 +1948,16 @@ gb_internal lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAn
LLVMValueRef index_mask;
if (elem_size == 1) {
// 8-bit: mask to table size (like pshufb behavior)
// 8-bit: mask to src size (like pshufb behavior)
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
} else if (elem_size == 2) {
// 16-bit: mask to table size
// 16-bit: mask to src size
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
} else if (elem_size == 4) {
// 32-bit: mask to table size
// 32-bit: mask to src size
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
} else {
// 64-bit: mask to table size
// 64-bit: mask to src size
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
}
@@ -1978,11 +1978,11 @@ gb_internal lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAn
index_i32 = masked_index;
}
values[i] = LLVMBuildExtractElement(p->builder, table, index_i32, "");
values[i] = LLVMBuildExtractElement(p->builder, src, index_i32, "");
}
// Build result vector
res.value = LLVMGetUndef(LLVMTypeOf(table));
res.value = LLVMGetUndef(LLVMTypeOf(src));
for (i64 i = 0; i < count; i++) {
LLVMValueRef idx_i = LLVMConstInt(i32_type, cast(unsigned)i, false);
res.value = LLVMBuildInsertElement(p->builder, res.value, values[i], idx_i, "");