Add deprecated and require_results attributes to math_functions.odin

This commit is contained in:
gingerBill
2024-08-14 10:55:40 +01:00
parent 491def9d5b
commit d1e114742e

View File

@@ -28,155 +28,184 @@ Mat22_zero :: Mat22{0, 0, 0, 0}
// @return the minimum of two floats
@(deprecated="Prefer the built-in 'min(a, b)'", require_results)
MinFloat :: proc "c" (a, b: f32) -> f32 {
return min(a, b)
}
// @return the maximum of two floats
@(deprecated="Prefer the built-in 'max(a, b)'", require_results)
MaxFloat :: proc "c" (a, b: f32) -> f32 {
return max(a, b)
}
// @return the absolute value of a float
@(deprecated="Prefer the built-in 'abs(a)'", require_results)
AbsFloat :: proc "c" (a: f32) -> f32 {
return abs(a)
}
// @return a f32 clamped between a lower and upper bound
@(deprecated="Prefer the built-in 'clamp(a, lower, upper)'", require_results)
ClampFloat :: proc "c" (a, lower, upper: f32) -> f32 {
return clamp(a, lower, upper)
}
// @return the minimum of two integers
@(deprecated="Prefer the built-in 'min(a, b)'", require_results)
MinInt :: proc "c" (a, b: c.int) -> c.int {
return min(a, b)
}
// @return the maximum of two integers
@(deprecated="Prefer the built-in 'max(a, b)'", require_results)
MaxInt :: proc "c" (a, b: c.int) -> c.int {
return max(a, b)
}
// @return the absolute value of an integer
@(deprecated="Prefer the built-in 'abs(a)'", require_results)
AbsInt :: proc "c" (a: c.int) -> c.int {
return abs(a)
}
// @return an integer clamped between a lower and upper bound
@(deprecated="Prefer the built-in 'clamp(a, lower, upper)'", require_results)
ClampInt :: proc "c" (a, lower, upper: c.int) -> c.int {
return clamp(a, lower, upper)
}
// Vector dot product
@(require_results)
Dot :: proc "c" (a, b: Vec2) -> f32 {
return a.x * b.x + a.y * b.y
}
// Vector cross product. In 2D this yields a scalar.
@(require_results)
Cross :: proc "c" (a, b: Vec2) -> f32 {
return a.x * b.y - a.y * b.x
}
// Perform the cross product on a vector and a scalar. In 2D this produces a vector.
@(require_results)
CrossVS :: proc "c" (v: Vec2, s: f32) -> Vec2 {
return {s * v.y, -s * v.x}
}
// Perform the cross product on a scalar and a vector. In 2D this produces a vector.
@(require_results)
CrossSV :: proc "c" (s: f32, v: Vec2) -> Vec2 {
return {-s * v.y, s * v.x}
}
// Get a left pointing perpendicular vector. Equivalent to b2CrossSV(1, v)
@(require_results)
LeftPerp :: proc "c" (v: Vec2) -> Vec2 {
return {-v.y, v.x}
}
// Get a right pointing perpendicular vector. Equivalent to b2CrossVS(v, 1)
@(require_results)
RightPerp :: proc "c" (v: Vec2) -> Vec2 {
return {v.y, -v.x}
}
// Vector addition
@(deprecated="Prefer 'a + b'", require_results)
Add :: proc "c" (a, b: Vec2) -> Vec2 {
return a + b
}
// Vector subtraction
@(deprecated="Prefer 'a - b'", require_results)
Sub :: proc "c" (a, b: Vec2) -> Vec2 {
return a - b
}
// Vector negation
@(deprecated="Prefer '-a'", require_results)
Neg :: proc "c" (a: Vec2) -> Vec2 {
return -a
}
// Vector linear interpolation
// https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
@(require_results)
Lerp :: proc "c" (a, b: Vec2, t: f32) -> Vec2 {
return {(1 - t) * a.x + t * b.x, (1 - t) * a.y + t * b.y}
}
// Component-wise multiplication
@(deprecated="Prefer 'a * b'", require_results)
Mul :: proc "c" (a, b: Vec2) -> Vec2 {
return a * b
}
// Multiply a scalar and vector
@(deprecated="Prefer 's * v'", require_results)
MulSV :: proc "c" (s: f32, v: Vec2) -> Vec2 {
return s * v
}
// a + s * b
@(deprecated="Prefer 'a + s * b'", require_results)
MulAdd :: proc "c" (a: Vec2, s: f32, b: Vec2) -> Vec2 {
return a + s * b
}
// a - s * b
@(deprecated="Prefer 'a - s * b'", require_results)
MulSub :: proc "c" (a: Vec2, s: f32, b: Vec2) -> Vec2 {
return a - s * b
}
// Component-wise absolute vector
@(require_results)
Abs :: proc "c" (a: Vec2) -> (b: Vec2) {
b.x = AbsFloat(a.x)
b.y = AbsFloat(a.y)
b.x = abs(a.x)
b.y = abs(a.y)
return
}
// Component-wise minimum vector
@(require_results)
Min :: proc "c" (a, b: Vec2) -> (c: Vec2) {
c.x = MinFloat(a.x, b.x)
c.y = MinFloat(a.y, b.y)
c.x = min(a.x, b.x)
c.y = min(a.y, b.y)
return
}
// Component-wise maximum vector
@(require_results)
Max :: proc "c" (a, b: Vec2) -> (c: Vec2) {
c.x = MaxFloat(a.x, b.x)
c.y = MaxFloat(a.y, b.y)
c.x = max(a.x, b.x)
c.y = max(a.y, b.y)
return
}
// Component-wise clamp vector v into the range [a, b]
@(require_results)
Clamp :: proc "c" (v: Vec2, a, b: Vec2) -> (c: Vec2) {
c.x = ClampFloat(v.x, a.x, b.x)
c.y = ClampFloat(v.y, a.y, b.y)
c.x = clamp(v.x, a.x, b.x)
c.y = clamp(v.y, a.y, b.y)
return
}
// Get the length of this vector (the norm)
@(require_results)
Length :: proc "c" (v: Vec2) -> f32 {
return math.sqrt(v.x * v.x + v.y * v.y)
}
// Get the length squared of this vector
@(require_results)
LengthSquared :: proc "c" (v: Vec2) -> f32 {
return v.x * v.x + v.y * v.y
}
// Get the distance between two points
@(require_results)
Distance :: proc "c" (a, b: Vec2) -> f32 {
dx := b.x - a.x
dy := b.y - a.y
@@ -184,18 +213,21 @@ Distance :: proc "c" (a, b: Vec2) -> f32 {
}
// Get the distance squared between points
@(require_results)
DistanceSquared :: proc "c" (a, b: Vec2) -> f32 {
c := Vec2{b.x - a.x, b.y - a.y}
return c.x * c.x + c.y * c.y
}
// Make a rotation using an angle in radians
@(require_results)
MakeRot :: proc "c" (angle: f32) -> Rot {
// todo determinism
return {math.cos(angle), math.sin(angle)}
}
// Normalize rotation
@(require_results)
NormalizeRot :: proc "c" (q: Rot) -> Rot {
mag := math.sqrt(q.s * q.s + q.c * q.c)
invMag := f32(mag > 0.0 ? 1.0 / mag : 0.0)
@@ -203,6 +235,7 @@ NormalizeRot :: proc "c" (q: Rot) -> Rot {
}
// Is this rotation normalized?
@(require_results)
IsNormalized :: proc "c" (q: Rot) -> bool {
// larger tolerance due to failure on mingw 32-bit
qq := q.s * q.s + q.c * q.c
@@ -211,6 +244,7 @@ IsNormalized :: proc "c" (q: Rot) -> bool {
// Normalized linear interpolation
// https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
@(require_results)
NLerp :: proc "c" (q1: Rot, q2: Rot, t: f32) -> Rot {
omt := 1 - t
return NormalizeRot({
@@ -222,6 +256,7 @@ NLerp :: proc "c" (q1: Rot, q2: Rot, t: f32) -> Rot {
// Integration rotation from angular velocity
// @param q1 initial rotation
// @param deltaAngle the angular displacement in radians
@(require_results)
IntegrateRotation :: proc "c" (q1: Rot, deltaAngle: f32) -> Rot {
// dc/dt = -omega * sin(t)
// ds/dt = omega * cos(t)
@@ -237,6 +272,7 @@ IntegrateRotation :: proc "c" (q1: Rot, deltaAngle: f32) -> Rot {
// @param q1 initial rotation
// @param q2 final rotation
// @param inv_h inverse time step
@(require_results)
ComputeAngularVelocity :: proc "c" (q1: Rot, q2: Rot, inv_h: f32) -> f32 {
// ds/dt = omega * cos(t)
// dc/dt = -omega * sin(t)
@@ -253,22 +289,26 @@ ComputeAngularVelocity :: proc "c" (q1: Rot, q2: Rot, inv_h: f32) -> f32 {
}
// Get the angle in radians in the range [-pi, pi]
@(require_results)
Rot_GetAngle :: proc "c" (q: Rot) -> f32 {
// todo determinism
return math.atan2(q.s, q.c)
}
// Get the x-axis
@(require_results)
Rot_GetXAxis :: proc "c" (q: Rot) -> Vec2 {
return {q.c, q.s}
}
// Get the y-axis
@(require_results)
Rot_GetYAxis :: proc "c" (q: Rot) -> Vec2 {
return {-q.s, q.c}
}
// Multiply two rotations: q * r
@(require_results)
MulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
// [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
@@ -280,6 +320,7 @@ MulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
}
// Transpose multiply two rotations: qT * r
@(require_results)
InvMulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
// [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
@@ -291,6 +332,7 @@ InvMulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
}
// relative angle between b and a (rot_b * inv(rot_a))
@(require_results)
RelativeAngle :: proc "c" (b, a: Rot) -> f32 {
// sin(b - a) = bs * ac - bc * as
// cos(b - a) = bc * ac + bs * as
@@ -300,6 +342,7 @@ RelativeAngle :: proc "c" (b, a: Rot) -> f32 {
}
// Convert an angle in the range [-2*pi, 2*pi] into the range [-pi, pi]
@(require_results)
UnwindAngle :: proc "c" (angle: f32) -> f32 {
if angle < -pi {
return angle + 2.0 * pi
@@ -310,16 +353,19 @@ UnwindAngle :: proc "c" (angle: f32) -> f32 {
}
// Rotate a vector
@(require_results)
RotateVector :: proc "c" (q: Rot, v: Vec2) -> Vec2 {
return {q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y}
}
// Inverse rotate a vector
@(require_results)
InvRotateVector :: proc "c" (q: Rot, v: Vec2) -> Vec2 {
return {q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y}
}
// Transform a point (e.g. local space to world space)
@(require_results)
TransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
x := (t.q.c * p.x - t.q.s * p.y) + t.p.x
y := (t.q.s * p.x + t.q.c * p.y) + t.p.y
@@ -327,6 +373,7 @@ TransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
}
// Inverse transform a point (e.g. world space to local space)
@(require_results)
InvTransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
vx := p.x - t.p.x
vy := p.y - t.p.y
@@ -335,6 +382,7 @@ InvTransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
// = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
@(require_results)
MulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
C.q = MulRot(A.q, B.q)
C.p = RotateVector(A.q, B.p) + A.p
@@ -343,6 +391,7 @@ MulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
// v2 = A.q' * (B.q * v1 + B.p - A.p)
// = A.q' * B.q * v1 + A.q' * (B.p - A.p)
@(require_results)
InvMulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
C.q = InvMulRot(A.q, B.q)
C.p = InvRotateVector(A.q, B.p-A.p)
@@ -350,11 +399,13 @@ InvMulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
}
// Multiply a 2-by-2 matrix times a 2D vector
@(deprecated="Prefer 'A * v'", require_results)
MulMV :: proc "c" (A: Mat22, v: Vec2) -> Vec2 {
return A * v
}
// Get the inverse of a 2-by-2 matrix
@(require_results)
GetInverse22 :: proc "c" (A: Mat22) -> Mat22 {
a := A[0, 0]
b := A[0, 1]
@@ -373,6 +424,7 @@ GetInverse22 :: proc "c" (A: Mat22) -> Mat22 {
// Solve A * x = b, where b is a column vector. This is more efficient
// than computing the inverse in one-shot cases.
@(require_results)
Solve22 :: proc "c" (A: Mat22, b: Vec2) -> Vec2 {
a11 := A[0, 0]
a12 := A[0, 1]
@@ -386,6 +438,7 @@ Solve22 :: proc "c" (A: Mat22, b: Vec2) -> Vec2 {
}
// Does a fully contain b
@(require_results)
AABB_Contains :: proc "c" (a, b: AABB) -> bool {
(a.lowerBound.x <= b.lowerBound.x) or_return
(a.lowerBound.y <= b.lowerBound.y) or_return
@@ -395,42 +448,49 @@ AABB_Contains :: proc "c" (a, b: AABB) -> bool {
}
// Get the center of the AABB.
@(require_results)
AABB_Center :: proc "c" (a: AABB) -> Vec2 {
return {0.5 * (a.lowerBound.x + a.upperBound.x), 0.5 * (a.lowerBound.y + a.upperBound.y)}
}
// Get the extents of the AABB (half-widths).
@(require_results)
AABB_Extents :: proc "c" (a: AABB) -> Vec2 {
return {0.5 * (a.upperBound.x - a.lowerBound.x), 0.5 * (a.upperBound.y - a.lowerBound.y)}
}
// Union of two AABBs
@(require_results)
AABB_Union :: proc "c" (a, b: AABB) -> (c: AABB) {
c.lowerBound.x = MinFloat(a.lowerBound.x, b.lowerBound.x)
c.lowerBound.y = MinFloat(a.lowerBound.y, b.lowerBound.y)
c.upperBound.x = MaxFloat(a.upperBound.x, b.upperBound.x)
c.upperBound.y = MaxFloat(a.upperBound.y, b.upperBound.y)
c.lowerBound.x = min(a.lowerBound.x, b.lowerBound.x)
c.lowerBound.y = min(a.lowerBound.y, b.lowerBound.y)
c.upperBound.x = max(a.upperBound.x, b.upperBound.x)
c.upperBound.y = max(a.upperBound.y, b.upperBound.y)
return
}
@(require_results)
Float_IsValid :: proc "c" (a: f32) -> bool {
math.is_nan(a) or_return
math.is_inf(a) or_return
return true
}
@(require_results)
Vec2_IsValid :: proc "c" (v: Vec2) -> bool {
(math.is_nan(v.x) || math.is_nan(v.y)) or_return
(math.is_inf(v.x) || math.is_inf(v.y)) or_return
return true
}
@(require_results)
Rot_IsValid :: proc "c" (q: Rot) -> bool {
(math.is_nan(q.s) || math.is_nan(q.c)) or_return
(math.is_inf(q.s) || math.is_inf(q.c)) or_return
return IsNormalized(q)
}
@(require_results)
Normalize :: proc "c" (v: Vec2) -> Vec2 {
length := Length(v)
if length < 1e-23 {
@@ -440,6 +500,7 @@ Normalize :: proc "c" (v: Vec2) -> Vec2 {
return invLength * v
}
@(require_results)
NormalizeChecked :: proc "odin" (v: Vec2) -> Vec2 {
length := Length(v)
if length < 1e-23 {
@@ -449,6 +510,7 @@ NormalizeChecked :: proc "odin" (v: Vec2) -> Vec2 {
return invLength * v
}
@(require_results)
GetLengthAndNormalize :: proc "c" (v: Vec2) -> (length: f32, vn: Vec2) {
length = Length(v)
if length < 1e-23 {