Optimized the 16-bit -> 32-bit SSE pixel conversion

Test code:
---
int main( int argc, char *argv[] )
{
    SDL_Surface *orig = SDL_LoadPNG("testyuv.png");
    SDL_Surface *surf16 = SDL_ConvertSurface(orig, SDL_PIXELFORMAT_RGB565);
    SDL_Surface *surf32 = SDL_ConvertSurface(surf16, SDL_PIXELFORMAT_ARGB8888);

    Uint64 then = SDL_GetTicks();
    for (int i = 0; i < 100000; ++i) {
        SDL_BlitSurface(surf16, NULL, surf32, NULL);
    }
    Uint64 now = SDL_GetTicks();
    SDL_Log("Blit took %d ms\n", (int)(now - then));
    return 0;
}
---

Results on my system:
BlitNtoN: Blit took 34522 ms
Blit_RGB565_32 (3 LUT): Blit took 9316 ms
Blit_RGB565_32 (1 LUT): Blit took 5268 ms
Blit_RGB565_32_SSE41: Blit took 1619 ms
This commit is contained in:
Sam Lantinga
2025-10-07 16:06:23 -07:00
parent 168de63a7a
commit 244ae39b30
2 changed files with 131 additions and 90 deletions

View File

@@ -870,28 +870,17 @@ static void ConvertAltivec32to32_prefetch(SDL_BlitInfo *info)
vec_dss(DST_CHAN_DEST);
}
static Uint32 GetBlitFeatures(void)
{
static Uint32 features = ~0u;
if (features == ~0u) {
features = (0
// Feature 1 is has-SSE41
| ((SDL_HasSSE41()) ? BLIT_FEATURE_HAS_SSE41 : 0)
// Feature 2 is has-AltiVec
| ((SDL_HasAltiVec()) ? BLIT_FEATURE_HAS_ALTIVEC : 0)
// Feature 4 is dont-use-prefetch
// !!!! FIXME: Check for G5 or later, not the cache size! Always prefetch on a G4.
| ((GetL3CacheSize() == 0) ? BLIT_FEATURE_ALTIVEC_DONT_USE_PREFETCH : 0));
}
return features;
}
// !!!! FIXME: Check for G5 or later, not the cache size! Always prefetch on a G4.
#define GetBlitFeatures() \
((SDL_HasAltiVec() ? BLIT_FEATURE_HAS_ALTIVEC : 0) | \
((GetL3CacheSize() == 0) ? BLIT_FEATURE_ALTIVEC_DONT_USE_PREFETCH : 0))
#ifdef __MWERKS__
#pragma altivec_model off
#endif
#else
// Feature 1 is has-SSE41
#define GetBlitFeatures() ((SDL_HasSSE41() ? BLIT_FEATURE_HAS_SSE41 : 0))
#define GetBlitFeatures() \
(SDL_HasSSE41() ? BLIT_FEATURE_HAS_SSE41 : 0)
#endif
// This is now endian dependent
@@ -1165,7 +1154,7 @@ static void Blit_XRGB8888_RGB565(SDL_BlitInfo *info)
#ifdef SDL_SSE4_1_INTRINSICS
static void SDL_TARGETING("sse4.1") Blit_RGB565_32_SSE41(SDL_BlitInfo *info, int Rshift, int Gshift, int Bshift, int Amask)
static void SDL_TARGETING("sse4.1") Blit_RGB565_32_SSE41(SDL_BlitInfo *info)
{
int c;
int width, height;
@@ -1182,47 +1171,104 @@ static void SDL_TARGETING("sse4.1") Blit_RGB565_32_SSE41(SDL_BlitInfo *info, int
dst = (Uint32 *)info->dst;
dstskip = info->dst_skip / 4;
// Red and blue channel multiplier to repeat 5 bits
__m128i rb_mult = _mm_shuffle_epi32(_mm_cvtsi32_si128(0x01080108), 0);
// Green channel multiplier to shift by 5 and then repeat 6 bits
__m128i g_mult = _mm_shuffle_epi32(_mm_cvtsi32_si128(0x20802080), 0);
// Red channel mask
__m128i r_mask = _mm_shuffle_epi32(_mm_cvtsi32_si128(0xf800f800), 0);
// Green channel mask
__m128i g_mask = _mm_shuffle_epi32(_mm_cvtsi32_si128(0x07e007e0), 0);
// Alpha channel mask
__m128i a_mask = _mm_shuffle_epi32(_mm_cvtsi32_si128(0xff00ff00), 0);
// Get the masks for converting from ARGB
const SDL_PixelFormatDetails *dstfmt = info->dst_fmt;
const Uint32 Rshift = dstfmt->Rshift;
const Uint32 Gshift = dstfmt->Gshift;
const Uint32 Bshift = dstfmt->Bshift;
Uint32 Amask, Ashift;
SDL_Get8888AlphaMaskAndShift(dstfmt, &Amask, &Ashift);
// The byte offsets for the start of each pixel
const __m128i mask_offsets = _mm_set_epi8(12, 12, 12, 12, 8, 8, 8, 8, 4, 4, 4, 4, 0, 0, 0, 0);
const __m128i convert_mask = _mm_add_epi32(
_mm_set1_epi32(
((16 >> 3) << Rshift) |
(( 8 >> 3) << Gshift) |
(( 0 >> 3) << Bshift) |
((24 >> 3) << Ashift)),
mask_offsets);
while (height--) {
// Copy in 4 pixel chunks
for (c = width / 4; c; --c) {
// Load 4 16-bit RGB565 pixels into an SSE register
__m128i pixels_rgb565 = _mm_loadu_si128((__m128i*)src);
// Copy in 8 pixel chunks
for (c = width / 8; c; --c) {
__m128i pixel = _mm_loadu_si128((__m128i *)src);
__m128i red = pixel;
__m128i green = pixel;
__m128i blue = pixel;
// Extract Red components (5 bits)
__m128i red_5bit = _mm_and_si128(pixels_rgb565, _mm_set1_epi16(0xF800)); // Mask for Red
red_5bit = _mm_srli_epi16(red_5bit, 11); // Shift to get 5-bit value
__m128i red_8bit = _mm_cvtepu16_epi32(red_5bit); // Convert to 32-bit and zero-extend
red_8bit = _mm_slli_epi32(red_8bit, 3); // Scale to 8 bits (multiply by 8)
red_8bit = _mm_or_si128(red_8bit, _mm_srli_epi32(red_8bit, 5)); // Replicate top 3 bits for better scaling
// Get red in the upper 5 bits and then multiply
red = _mm_and_si128(red, r_mask);
red = _mm_mulhi_epu16(red, rb_mult);
// Extract Green components (6 bits)
__m128i green_6bit = _mm_and_si128(pixels_rgb565, _mm_set1_epi16(0x07E0)); // Mask for Green
green_6bit = _mm_srli_epi16(green_6bit, 5); // Shift to get 6-bit value
__m128i green_8bit = _mm_cvtepu16_epi32(green_6bit); // Convert to 32-bit and zero-extend
green_8bit = _mm_slli_epi32(green_8bit, 2); // Scale to 8 bits (multiply by 4)
green_8bit = _mm_or_si128(green_8bit, _mm_srli_epi32(green_8bit, 6)); // Replicate top 2 bits
// Get blue in the upper 5 bits and then multiply
blue = _mm_slli_epi16(blue, 11);
blue = _mm_mulhi_epu16(blue, rb_mult);
// Extract Blue components (5 bits)
__m128i blue_5bit = _mm_and_si128(pixels_rgb565, _mm_set1_epi16(0x001F)); // Mask for Blue
__m128i blue_8bit = _mm_cvtepu16_epi32(blue_5bit); // Convert to 32-bit and zero-extend
blue_8bit = _mm_slli_epi32(blue_8bit, 3); // Scale to 8 bits (multiply by 8)
blue_8bit = _mm_or_si128(blue_8bit, _mm_srli_epi32(blue_8bit, 5)); // Replicate top 3 bits
// Combine the red and blue channels
__m128i red_blue = _mm_or_si128(_mm_slli_epi16(red, 8), blue);
// Set Alpha to opaque (0xFF)
__m128i alpha_8bit = _mm_set1_epi32(Amask);
// Get the green channel and then multiply into place
green = _mm_and_si128(green, g_mask);
green = _mm_mulhi_epu16(green, g_mult);
// Combine into 32-bit values
__m128i argb_pixels_low = _mm_or_si128(alpha_8bit, _mm_slli_epi32(red_8bit, Rshift));
argb_pixels_low = _mm_or_si128(argb_pixels_low, _mm_slli_epi32(green_8bit, Gshift));
argb_pixels_low = _mm_or_si128(argb_pixels_low, _mm_slli_epi32(blue_8bit, Bshift));
// Combine the green and alpha channels
__m128i green_alpha = _mm_or_si128(green, a_mask);
// Store the results
_mm_storeu_si128((__m128i*)dst, argb_pixels_low);
src += 4;
dst += 4;
// Unpack them into output ARGB pixels
__m128i out1 = _mm_unpacklo_epi8(red_blue, green_alpha);
__m128i out2 = _mm_unpackhi_epi8(red_blue, green_alpha);
// Convert to dst format and save!
// This is an SSSE3 instruction
out1 = _mm_shuffle_epi8(out1, convert_mask);
out2 = _mm_shuffle_epi8(out2, convert_mask);
_mm_storeu_si128((__m128i*)dst, out1);
_mm_storeu_si128((__m128i*)(dst + 4), out2);
src += 8;
dst += 8;
}
// Get any leftovers
switch (width & 3) {
switch (width & 7) {
case 7:
RGB_FROM_RGB565(*src, r, g, b);
*dst++ = (r << Rshift) | (g << Gshift) | (b << Bshift) | Amask;
++src;
SDL_FALLTHROUGH;
case 6:
RGB_FROM_RGB565(*src, r, g, b);
*dst++ = (r << Rshift) | (g << Gshift) | (b << Bshift) | Amask;
++src;
SDL_FALLTHROUGH;
case 5:
RGB_FROM_RGB565(*src, r, g, b);
*dst++ = (r << Rshift) | (g << Gshift) | (b << Bshift) | Amask;
++src;
SDL_FALLTHROUGH;
case 4:
RGB_FROM_RGB565(*src, r, g, b);
*dst++ = (r << Rshift) | (g << Gshift) | (b << Bshift) | Amask;
++src;
SDL_FALLTHROUGH;
case 3:
RGB_FROM_RGB565(*src, r, g, b);
*dst++ = (r << Rshift) | (g << Gshift) | (b << Bshift) | Amask;
@@ -1244,26 +1290,6 @@ static void SDL_TARGETING("sse4.1") Blit_RGB565_32_SSE41(SDL_BlitInfo *info, int
}
}
static void Blit_RGB565_ARGB8888_SSE41(SDL_BlitInfo * info)
{
Blit_RGB565_32_SSE41(info, 16, 8, 0, 0xFF000000);
}
static void Blit_RGB565_ABGR8888_SSE41(SDL_BlitInfo * info)
{
Blit_RGB565_32_SSE41(info, 0, 8, 16, 0xFF000000);
}
static void Blit_RGB565_RGBA8888_SSE41(SDL_BlitInfo * info)
{
Blit_RGB565_32_SSE41(info, 24, 16, 8, 0x000000FF);
}
static void Blit_RGB565_BGRA8888_SSE41(SDL_BlitInfo * info)
{
Blit_RGB565_32_SSE41(info, 8, 16, 24, 0x000000FF);
}
#endif // SDL_SSE4_1_INTRINSICS
#ifdef SDL_HAVE_BLIT_N_RGB565
@@ -2555,6 +2581,7 @@ static void SDL_TARGETING("sse4.1") Blit8888to8888PixelSwizzleSSE41(SDL_BlitInfo
__m128i src128 = _mm_loadu_si128((__m128i *)src);
// Convert to dst format
// This is an SSSE3 instruction
src128 = _mm_shuffle_epi8(src128, convert_mask);
if (fill_alpha) {
@@ -2950,13 +2977,13 @@ static const struct blit_table normal_blit_2[] = {
#endif
#ifdef SDL_SSE4_1_INTRINSICS
{ 0x0000F800, 0x000007E0, 0x0000001F, 4, 0x00FF0000, 0x0000FF00, 0x000000FF,
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_ARGB8888_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_32_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
{ 0x0000F800, 0x000007E0, 0x0000001F, 4, 0x000000FF, 0x0000FF00, 0x00FF0000,
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_ABGR8888_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_32_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
{ 0x0000F800, 0x000007E0, 0x0000001F, 4, 0xFF000000, 0x00FF0000, 0x0000FF00,
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_RGBA8888_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_32_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
{ 0x0000F800, 0x000007E0, 0x0000001F, 4, 0x0000FF00, 0x00FF0000, 0xFF000000,
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_BGRA8888_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
BLIT_FEATURE_HAS_SSE41, Blit_RGB565_32_SSE41, NO_ALPHA | COPY_ALPHA | SET_ALPHA },
#endif
#ifdef SDL_HAVE_BLIT_N_RGB565
{ 0x0000F800, 0x000007E0, 0x0000001F, 4, 0x00FF0000, 0x0000FF00, 0x000000FF,

View File

@@ -1680,39 +1680,53 @@ static Uint32 Calculate(int v, int bits, int vmax, int shift)
#endif
}
static Uint32 Calculate565toARGB(int v)
static Uint32 Calculate565toARGB(int v, const SDL_PixelFormatDetails *fmt)
{
Uint8 r = (v & 0xF800) >> 11;
Uint8 g = (v & 0x07E0) >> 5;
Uint8 b = (v & 0x001F);
return 0xFF000000 |
Calculate(r, 5, 31, 16) |
Calculate(g, 6, 63, 8) |
Calculate(b, 5, 31, 0);
return fmt->Amask |
Calculate(r, 5, 31, fmt->Rshift) |
Calculate(g, 6, 63, fmt->Gshift) |
Calculate(b, 5, 31, fmt->Bshift);
}
static int SDLCALL surface_test16BitTo32Bit(void *arg)
{
static const SDL_PixelFormat formats[] = {
SDL_PIXELFORMAT_ARGB8888,
SDL_PIXELFORMAT_ABGR8888,
SDL_PIXELFORMAT_RGBA8888,
SDL_PIXELFORMAT_BGRA8888
};
static Uint16 pixels[1 << 16];
static Uint32 expected[1 << 16];
int i, ret;
int i, p, ret;
SDL_Surface *surface16;
SDL_Surface *surface32;
SDL_Surface *expected32;
for (i = 0; i < SDL_arraysize(pixels); ++i) {
pixels[i] = i;
expected[i] = Calculate565toARGB(i);
for (p = 0; p < SDL_arraysize(pixels); ++p) {
pixels[p] = p;
}
surface16 = SDL_CreateSurfaceFrom(SDL_arraysize(pixels), 1, SDL_PIXELFORMAT_RGB565, pixels, sizeof(pixels));
surface32 = SDL_ConvertSurface(surface16, SDL_PIXELFORMAT_ARGB8888);
expected32 = SDL_CreateSurfaceFrom(SDL_arraysize(expected), 1, SDL_PIXELFORMAT_ARGB8888, expected, sizeof(expected));
ret = SDLTest_CompareSurfaces(surface32, expected32, 0);
SDLTest_AssertCheck(ret == 0, "Validate result from SDLTest_CompareSurfaces, expected: 0, got: %i", ret);
for (i = 0; i < SDL_arraysize(formats); ++i) {
SDL_PixelFormat format = formats[i];
const SDL_PixelFormatDetails *fmt = SDL_GetPixelFormatDetails(format);
SDLTest_Log("Checking conversion from SDL_PIXELFORMAT_RGB565 to %s", SDL_GetPixelFormatName(format));
surface32 = SDL_ConvertSurface(surface16, format);
for (p = 0; p < SDL_arraysize(pixels); ++p) {
expected[p] = Calculate565toARGB(p, fmt);
}
expected32 = SDL_CreateSurfaceFrom(SDL_arraysize(expected), 1, format, expected, sizeof(expected));
ret = SDLTest_CompareSurfaces(surface32, expected32, 0);
SDLTest_AssertCheck(ret == 0, "Validate result from SDLTest_CompareSurfaces, expected: 0, got: %i", ret);
SDL_DestroySurface(surface32);
SDL_DestroySurface(expected32);
}
SDL_DestroySurface(surface16);
SDL_DestroySurface(surface32);
SDL_DestroySurface(expected32);
return TEST_COMPLETED;
}